
Scalable Vector Graphics (SVG) 1.1 Specification

Scalable Vector Graphics (SVG) 1.1
Specification

W3C Recommendation 14 January 2003

This version:
http://www.w3.org/TR/2003/REC-SVG11-20030114/

Latest version:
http://www.w3.org/TR/SVG11/

Previous version:
http://www.w3.org/TR/2002/PR-SVG11-20021115/

Editors:
Jon Ferraiolo, Adobe Systems <jon.ferraiolo@adobe.com> (version 1.0)
藤沢 淳 (FUJISAWA Jun), Canon <fujisawa.jun@canon.co.jp>
(modularization and DTD)
Dean Jackson, W3C/CSIRO <dean@w3.org> (version 1.1)

Authors:
See author list

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative packages: zip archive of
HTML (without external dependencies) and PDF.

See also the translations of this document.

Copyright © 2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

http://www.w3.org/TR/SVG/ (1 of 6)4/2/07 5:27 PM

http://www.w3.org/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/2002/PR-SVG11-20021115/
mailto:jon.ferraiolo@adobe.com
mailto:fujisawa.jun@canon.co.jp
mailto:dean@w3.org
http://www.w3.org/2003/01/REC-SVG11-20030114-errata
http://www.w3.org/TR/SVG/REC-SVG11-20030114.zip
http://www.w3.org/TR/SVG/REC-SVG11-20030114.zip
http://www.w3.org/TR/SVG/REC-SVG11-20030114.pdf
http://www.w3.org/Graphics/SVG/svg-updates/translations
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

Scalable Vector Graphics (SVG) 1.1 Specification

Abstract

This specification defines the features and syntax for Scalable Vector Graphics
(SVG) Version 1.1, a modularized language for describing two-dimensional
vector and mixed vector/raster graphics in XML.

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this
document series is maintained at the W3C.

This document is the 14 January 2003 Recommendation of the SVG 1.1
specification. SVG 1.1 serves two purposes: to provide a modularization of SVG
based on SVG 1.0 and to include the errata found so far in SVG 1.0. The SVG
Working Group believes SVG 1.1 has been widely reviewed by the community,
developers and other W3C groups. The list of changes made in this version of
the document is available.

Public comments on this Recommendation are welcome. Please send them to
www-svg@w3.org: the public email list for issues related to vector graphics on
the Web. This list is archived and senders must agree to have their message
publicly archived from their first posting. To subscribe send an email to www-svg-
request@w3.org with the word subscribe in the subject line.

The W3C SVG Working Group have released a test suite for SVG 1.1 along with
an implementation report.

The latest information regarding patent disclosures related to this document is
available on the Web. As of this publication, the SVG Working Group are not
aware of any royalty-bearing patents they believe to be essential to SVG.

This document has been produced by the W3C SVG Working Group as part of
the Graphics Activity within the W3C Interaction Domain. The goals of the W3C
SVG Working Group are discussed in the W3C SVG Charter (W3C Members
only). The W3C SVG Working Group maintains a public Web page, http://www.
w3.org/Graphics/SVG/, that contains further background information. The
authors of this document are the SVG Working Group participants.

http://www.w3.org/TR/SVG/ (2 of 6)4/2/07 5:27 PM

http://www.w3.org/TR/SVG/changes.html
mailto:www-svg@w3.org
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/Graphics/SVG/Test/
http://www.w3.org/Graphics/SVG/Test/20021115/matrix.html
http://www.w3.org/Graphics/SVG/Disclosures
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/Activity
http://www.w3.org/Interaction/
http://www.w3.org/Graphics/SVG/Group/SVGcharter2.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

Scalable Vector Graphics (SVG) 1.1 Specification

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR/. W3C publications may be updated, replaced, or
obsoleted by other documents at any time.

Available languages

The English version of this specification is the only normative version. However,
for translations in other languages see http://www.w3.org/Graphics/SVG/svg-
updates/translations.html.

Table of Contents

● Expanded Table of Contents
● Copyright notice

● 1 Introduction
● 2 Concepts
● 3 Rendering Model
● 4 Basic Data Types and Interfaces
● 5 Document Structure
● 6 Styling
● 7 Coordinate Systems, Transformations and Units
● 8 Paths
● 9 Basic Shapes
● 10 Text
● 11 Painting: Filling, Stroking and Marker Symbols
● 12 Color
● 13 Gradients and Patterns
● 14 Clipping, Masking and Compositing
● 15 Filter Effects
● 16 Interactivity
● 17 Linking
● 18 Scripting
● 19 Animation
● 20 Fonts
● 21 Metadata
● 22 Backwards Compatibility
● 23 Extensibility

http://www.w3.org/TR/SVG/ (3 of 6)4/2/07 5:27 PM

http://www.w3.org/TR/
http://www.w3.org/Graphics/SVG/svg-updates/translations.html
http://www.w3.org/Graphics/SVG/svg-updates/translations.html
http://www.w3.org/TR/SVG/expanded-toc.html
http://www.w3.org/TR/SVG/copyright-notice.html
http://www.w3.org/TR/SVG/backward.html
http://www.w3.org/TR/SVG/extend.html

Scalable Vector Graphics (SVG) 1.1 Specification

● Appendix A: DTD
● Appendix B: SVG Document Object Model (DOM)
● Appendix C: IDL Definitions
● Appendix D: Java Language Binding
● Appendix E: ECMAScript Language Binding
● Appendix F: Implementation Requirements
● Appendix G: Conformance Criteria
● Appendix H: Accessibility Support
● Appendix I: Internationalization Support
● Appendix J: Minimizing SVG File Sizes
● Appendix K: References
● Appendix L: Element Index
● Appendix M: Attribute Index
● Appendix N: Property Index
● Appendix O: Feature Strings
● Appendix P: Index

The authors of the SVG 1.1 specification are the people who participated in the
SVG Working Group as members or alternates.

Authors:
❍ Ola Andersson, ZOOMON AB
❍ Phil Armstrong, Corel Corporation
❍ Henric Axelsson, Ericsson AB
❍ Robin Berjon, Expway
❍ Benoît Bézaire, Corel Corporation
❍ John Bowler, Microsoft Corporation
❍ Craig Brown, Canon Information Systems Research Australia
❍ Mike Bultrowicz, Savage Software
❍ Tolga Capin, Nokia
❍ Milt Capsimalis, Autodesk Inc.
❍ Mathias Larsson Carlander, Ericsson AB
❍ Jakob Cederquist, ZOOMON AB
❍ Charilaos Christopoulos, Ericsson AB
❍ Richard Cohn, Adobe Systems Inc.
❍ Lee Cole, Quark
❍ Don Cone, America Online Inc.
❍ Alex Danilo, Canon Information Systems Research Australia

http://www.w3.org/TR/SVG/ (4 of 6)4/2/07 5:27 PM

http://www.w3.org/TR/SVG/svgdtd.html
http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/SVG/idl.html
http://www.w3.org/TR/SVG/java.html
http://www.w3.org/TR/SVG/escript.html
http://www.w3.org/TR/SVG/implnote.html
http://www.w3.org/TR/SVG/conform.html
http://www.w3.org/TR/SVG/access.html
http://www.w3.org/TR/SVG/i18n.html
http://www.w3.org/TR/SVG/minimize.html
http://www.w3.org/TR/SVG/refs.html
http://www.w3.org/TR/SVG/indexlist.html

Scalable Vector Graphics (SVG) 1.1 Specification

❍ Thomas DeWeese, Eastman Kodak
❍ David Dodds, Lexica
❍ Andrew Donoho, IBM
❍ David Duce, Oxford Brookes University
❍ Jerry Evans, Sun Microsystems
❍ Jon Ferraiolo, Adobe Systems Inc.
❍ Darryl Fuller, Schema Software
❍ 藤沢 淳 (FUJISAWA Jun), Canon
❍ Scott Furman, Netscape Communications Corporation
❍ Brent Getlin, Macromedia
❍ Peter Graffagnino, Apple
❍ Rick Graham, BitFlash
❍ Vincent Hardy, Sun Microsystems Inc.
❍ 端山 貴也 (HAYAMA Takanari), KDDI Research Labs
❍ Lofton Henderson, OASIS
❍ Jan Christian Herlitz, Excosoft
❍ Alan Hester, Xerox Corporation
❍ Bob Hopgood, RAL (CCLRC)
❍ 石川 雅康 (ISHIKAWA Masayasu), W3C
❍ Dean Jackson, W3C/CSIRO (W3C Team Contact)
❍ Christophe Jolif, ILOG S.A.
❍ Lee Klosterman, Hewlett-Packard
❍ 小林 亜令 (KOBAYASHI Arei), KDDI Research Labs
❍ Thierry Kormann, ILOG S.A.
❍ Yuri Khramov, Schema Software
❍ Kelvin Lawrence, IBM
❍ Håkon Lie, Opera
❍ Chris Lilley, W3C (Working Group Chair)
❍ Philip Mansfield, Schema Software
❍ Kevin McCluskey, Netscape Communications Corporation
❍ 水口 充 (MINAKUCHI Mitsuru), Sharp Corporation
❍ Luc Minnebo, Agfa-Gevaert N.V.
❍ Tuan Nguyen, Microsoft Corporation
❍ 小野 修一郎 (ONO Shuichiro), Sharp Corporation
❍ Antoine Quint, Fuchsia Design (formerly of ILOG)
❍ 相良 毅 (SAGARA Takeshi), KDDI Research Labs
❍ Troy Sandal, Visio Corporation
❍ Peter Santangeli, Macromedia
❍ Haroon Sheikh, Corel Corporation
❍ Brad Sipes, ZOOMON AB
❍ Peter Sorotokin, Adobe Systems Inc.
❍ Gavriel State, Corel Corporation
❍ Robert Stevahn, Hewlett-Packard

http://www.w3.org/TR/SVG/ (5 of 6)4/2/07 5:27 PM

Scalable Vector Graphics (SVG) 1.1 Specification

❍ Timothy Thompson, Eastman Kodak
❍ 上田 宏高 (UEDA Hirotaka), Sharp Corporation
❍ Rick Yardumian, Canon Development Americas
❍ Charles Ying, Openwave Systems Inc.
❍ Shenxue Zhou, Quark

Acknowledgments

The SVG Working Group would like to acknowledge the great many people
outside of the SVG Working Group who help with the process of developing the
SVG 1.1 specification. These people are too numerous to list individually. They
include but are not limited to the early implementers of the SVG 1.0 and 1.1
languages (including viewers, authoring tools, and server-side transcoders),
developers of SVG content, people who have contributed on the www-svg@w3.
org and svg-developers@yahoogroups.com email lists, other Working Groups at
the W3C, and the W3C Team. SVG 1.1 is truly a cooperative effort between the
SVG Working Group, the rest of the W3C, and the public and benefits greatly
from the pioneering work of early implementers and content developers,
feedback from the public, and help from the W3C team.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/ (6 of 6)4/2/07 5:27 PM

http://www.w3.org/TR/SVG/expanded-toc.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/

Introduction - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

1 Introduction

Contents

● 1.1 About SVG
❍ 1.1.1 Modularization
❍ 1.1.2 Element and Attribute Collections
❍ 1.1.3 Profiling the SVG specification

● 1.2 SVG MIME type, file name extension and Macintosh file type
● 1.3 SVG Namespace, Public Identifier and System Identifier
● 1.4 Compatibility with Other Standards Efforts
● 1.5 Terminology
● 1.6 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics
(SVG).

SVG is a language for describing two-dimensional graphics in XML [XML10].
SVG allows for three types of graphic objects: vector graphic shapes (e.g., paths
consisting of straight lines and curves), images and text. Graphical objects can
be grouped, styled, transformed and composited into previously rendered
objects. The feature set includes nested transformations, clipping paths, alpha
masks, filter effects and template objects.

http://www.w3.org/TR/SVG/intro.html (1 of 12)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/copyright-notice.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/REC-xml

Introduction - SVG 1.1 - 20030114

SVG drawings can be interactive and dynamic. Animations can be defined and
triggered either declaratively (i.e., by embedding SVG animation elements in
SVG content) or via scripting.

Sophisticated applications of SVG are possible by use of a supplemental
scripting language which accesses SVG Document Object Model (DOM), which
provides complete access to all elements, attributes and properties. A rich set of
event handlers such as onmouseover and onclick can be assigned to any SVG
graphical object. Because of its compatibility and leveraging of other Web
standards, features like scripting can be done on XHTML and SVG elements
simultaneously within the same Web page.

SVG is a language for rich graphical content. For accessibility reasons, if there is
an original source document containing higher-level structure and semantics, it
is recommended that the higher-level information be made available somehow,
either by making the original source document available, or making an
alternative version available in an alternative format which conveys the higher-
level information, or by using SVG's facilities to include the higher-level
information within the SVG content. For suggested techniques in achieving
greater accessibility, see Accessibility.

1.1.1 Modularization

The modularization of SVG included here is a decomposition of SVG 1.0 and
errata into a collection of abstract modules that provide specific units of
functionality. These modules may be combined with each other and with
modules defined in other specifications (such as XHTML) to create SVG subset
and extension document types that qualify as members of the SVG family of
document types. See Conformance for a description of SVG family documents,
and [XHTMLplusMathMLplusSVG] for a profile that combines XHTML, MathML
and SVG.

Each major section of the SVG specification produces a module named after
that section, e.g. "Text Module" or "Basic Structure Module". A module without
the "Basic" prefix implies that the module includes the complete set of elements
and attributes, with no restrictions, from the corresponding section of the
specification. If there is a need to provide a subset of the functionality of the
complete module, then a Basic module is created with the "Basic" prefix added
to the name of the complete module. For example, the "Basic Text Module" is a
subset of the "Text Module".

http://www.w3.org/TR/SVG/intro.html (2 of 12)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/SVG/access.html
http://www.w3.org/TR/SVG/conform.html
http://www.w3.org/TR/SVG/refs.html#ref-XHTMLplusMathMLplusSVG

Introduction - SVG 1.1 - 20030114

It is an error for a profile of SVG 1.1 to include both the complete module and its
basic subset module (e.g. the "Text Module" and the "Basic Text Module").

1.1.2 Element and Attribute collections

Most modules define a named collection of elements or attributes. These
collections are used as a shorthand when describing the set of attributes allowed
on a particular element (eg. the "Style" attibute collection) or the set of elements
allowed as children of a particular element (eg. the "Shape" element collection).
All collections have names that begin with an uppercase character.

When defining a profile, it is assumed that all the element and attribute
collections are defined to be empty. That way, a module can redefine the
collection as it is included in the profile, adding elements or attributes to make
them available within the profile. Therefore, it is not a mistake to refer to an
element or attribute collection from a module that is not included in the profile, it
simply means that collection is empty.

The exception to this is the collection Presentation.attrib, which is the union of all
the presentation attribute collections (i.e. all the attribute collections with the
string "Presentation" in their name). Presentation.attrib is not defined in any
module, but it exists in every profile.

A subset module (ie. a Basic module) may define a different named collection
from a superset module. Since it is an error to include a subset and superset
module of the same group in a profile, all attribute and element collections will
either be defined once by the module that includes them, or will have their
default empty value (again, with the exception of Presentation.attrib which is not
defined by any module).

1.1.3 Profiling the SVG specification

The modularization of SVG 1.1 allows profiles to be described by listing the SVG
modules they allow and possibly a small number of restrictions or extensions on
the elements provided by those modules.

The "Full" profile of SVG 1.1 is the collection of all the complete modules listed in
this specification (ie. every module that is not a subset module).

When applied to conformance, the unqualified term "SVG" implies the "Full"
profile of SVG 1.1 defined by this specification. If an implementation does not
implement the Full profile, it must state either the profile to which it conforms, or

http://www.w3.org/TR/SVG/intro.html (3 of 12)4/2/07 5:28 PM

Introduction - SVG 1.1 - 20030114

that it implements a subset of SVG.

1.2 SVG MIME type, file name extension and
Macintosh file type

The MIME type for SVG is "image/svg+xml" (see [RFC3023]). The registration
of this MIME type is in progress at the W3C.

It is recommended that SVG files have the extension ".svg" (all lowercase) on
all platforms. It is recommended that gzip-compressed SVG files have the
extension ".svgz" (all lowercase) on all platforms.

It is recommended that SVG files stored on Macintosh HFS file systems be given
a file type of "svg " (all lowercase, with a space character as the fourth letter).
It is recommended that gzip-compressed SVG files stored on Macintosh HFS file
systems be given a file type of "svgz" (all lowercase).

1.3 SVG Namespace, Public Identifier and System
Identifier

The following are the SVG 1.1 namespace, public identifier and system identifier:

SVG Namespace:
http://www.w3.org/2000/svg

Public Identifier for SVG 1.1:
PUBLIC "-//W3C//DTD SVG 1.1//EN"

System Identifier for the SVG 1.1 Recommendation:
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd

The following is an example document type declaration for an SVG document:

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

Note that DTD listed in the System Identifier is a modularized DTD (ie. its
contents are spread over multiple files), which means that a validator may have
to fetch the multiple modules in order to validate. For that reason, there is a
single flattened DTD available that corresponds to the SVG 1.1 modularized
DTD. It can be found at http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.
dtd.

http://www.w3.org/TR/SVG/intro.html (4 of 12)4/2/07 5:28 PM

http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.w3.org/TR/REC-xml#sec-prolog-dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd
http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-flat.dtd

Introduction - SVG 1.1 - 20030114

1.4 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards
efforts. By leveraging and conforming to other standards, SVG becomes more
powerful and makes it easier for users to learn how to incorporate SVG into their
Web sites.

The following describes some of the ways in which SVG maintains compatibility
with, leverages and integrates with other W3C efforts:

● SVG is an application of XML and is compatible with the "Extensible
Markup Language (XML) 1.0" Recommendation [XML10]

● SVG is compatible with the "Namespaces in XML" Recommendation
[XML-NS]

● SVG utilizes "XML Linking Language (XLink)" [XLINK] for URI referencing
and requires support for base URI specifications defined in "XML
Base" [XML-BASE].

● SVG's syntax for referencing element IDs is a compatible subset of the ID
referencing syntax in "XML Pointer Language (XPointer)" [XPTR].

● SVG content can be styled by either CSS (see "Cascading Style Sheets
(CSS) level 2" specification [CSS2]) or XSL (see "XSL Transformations
(XSLT) Version 1.0" [XSLT]). (See Styling with CSS and Styling with XSL)

● SVG supports relevant properties and approaches common to CSS and
XSL, plus selected semantics and features of CSS (see SVG's styling
properties and SVG's Use of Cascading Style Sheets).

● External style sheets are referenced using the mechanism documented in
"Associating Style Sheets with XML documents Version 1.0" [XML-SS].

● SVG includes a complete Document Object Model (DOM) and conforms
to the "Document Object Model (DOM) level 1" Recommendation [DOM1].
The SVG DOM has a high level of compatibility and consistency with the
HTML DOM that is defined in the DOM Level 1 specification. Additionally,
the SVG DOM supports and incorporates many of the facilities described
in "Document Object Model (DOM) level 2" [DOM2], including the CSS
object model and event handling.

● SVG incorporates some features and approaches that are part of the
"Synchronized Multimedia Integration Language (SMIL) 1.0
Specification" [SMIL1], including the 'switch' element and the
systemLanguage attribute.

● SVG's animation features (see Animation) were developed in

http://www.w3.org/TR/SVG/intro.html (5 of 12)4/2/07 5:28 PM

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xptr/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-smil/

Introduction - SVG 1.1 - 20030114

collaboration with the W3C Synchronized Multimedia (SYMM) Working
Group, developers of the Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification [SMIL1]. SVG's animation features incorporate
and extend the general-purpose XML animation capabilities described in
the "SMIL Animation" specification [SMILANIM].

● SVG has been designed to allow future versions of SMIL to use animated
or static SVG content as media components.

● SVG attempts to achieve maximum compatibility with both HTML 4
[HTML4] and XHTML(tm) 1.0 [XHTML]. Many of SVG's facilities are
modeled directly after HTML, including its use of CSS [CSS2], its
approach to event handling, and its approach to its Document Object
Model [DOM2].

● SVG is compatible with W3C work on internationalization. References
(W3C and otherwise) include: [UNICODE] and [CHARMOD]. Also, see
Internationalization Support.

● SVG is compatible with W3C work on Web Accessibility [WAI]. Also, see
Accessibility Support.

In environments which support [DOM2] for other XML grammars (e.g., XHTML
[XHTML]) and which also support SVG and the SVG DOM, a single scripting
approach can be used simultaneously for both XML documents and SVG
graphics, in which case interactive and dynamic effects will be possible on
multiple XML namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
"MAY", and "OPTIONAL" are to be interpreted as described in RFC 2119 (see
[RFC2119]). However, for readability, these words do not appear in all
uppercase letters in this specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this
specification does not depend on their realization. These recommendations
contain the expression "We recommend ...", "This specification recommends ...",
or some similar wording.

1.6 Definitions

http://www.w3.org/TR/SVG/intro.html (6 of 12)4/2/07 5:28 PM

http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/SVG/i18n.html
http://www.w3.org/WAI/
http://www.w3.org/TR/SVG/access.html
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/xhtml1/
http://www.ietf.org/rfc/rfc2119.txt

Introduction - SVG 1.1 - 20030114

basic shape
Standard shapes which are predefined in SVG as a convenience for
common graphical operations. Specifically: 'rect', 'circle', 'ellipse', 'line',
'polyline', 'polygon'.

canvas
A surface onto which graphics elements are drawn, which can be real
physical media such as a display or paper or an abstract surface such as
a allocated region of computer memory. See the discussion of the SVG
canvas in the chapter on Coordinate Systems, Transformations and Units.

clipping path
A combination of 'path', 'text' and basic shapes which serve as the outline
of a (in the absence of anti-aliasing) 1-bit mask, where everything on the
"inside" of the outline is allowed to show through but everything on the
outside is masked out. See Clipping paths.

container element
An element which can have graphics elements and other container
elements as child elements. Specifically: 'svg', 'g', 'defs' 'symbol',
'clipPath', 'mask', 'pattern', 'marker', 'a' and 'switch'.

current innermost SVG document fragment
The XML document sub-tree which starts with the most immediate
ancestor 'svg' element of a given SVG element.

current SVG document fragment
The XML document sub-tree which starts with the outermost ancestor
'svg' element of a given SVG element, with the requirement that all
container elements between the outermost 'svg' and this element are all
elements in the SVG language.

current transformation matrix (CTM)
Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x' y'
1] = [x y 1] * matrix. The current transformation matrix (CTM) defines the
mapping from the user coordinate system into the viewport coordinate
system. See Coordinate system transformations.

fill

http://www.w3.org/TR/SVG/intro.html (7 of 12)4/2/07 5:28 PM

Introduction - SVG 1.1 - 20030114

The operation of painting the interior of a shape or the interior of the
character glyphs in a text string.

font
A font represents an organized collection of glyphs in which the various
glyph representations will share a common look or styling such that, when
a string of characters is rendered together, the result is highly legible,
conveys a particular artistic style and provides consistent inter-character
alignment and spacing.

glyph
A glyph represents a unit of rendered content within a font. Often, there is
a one-to-one correspondence between characters to be drawn and
corresponding glyphs (e.g., often, the character "A" is rendered using a
single glyph), but other times multiple glyphs are used to render a single
character (e.g., use of accents) or a single glyph can be used to render
multiple characters (e.g., ligatures). Typically, a glyph is defined by one or
more shapes such as a path, possibly with additional information such as
rendering hints that help a font engine to produce legible text in small
sizes.

graphics element
One of the element types that can cause graphics to be drawn onto the
target canvas. Specifically: 'path', 'text', 'rect', 'circle', 'ellipse', 'line',
'polyline', 'polygon', 'image' and 'use'.

graphics referencing element
A graphics element which uses a reference to a different document or
element as the source of its graphical content. Specifically: 'use' and
'image'.

local URI reference
A Uniform Resource Identifier [URI] that does not include an
<absoluteURI> or <relativeURI> and thus represents a reference to an
element within the current document. See References and the 'defs'
element.

mask
A container element which can contain graphics elements or other
container elements which define a set of graphics that is to be used as a
semi-transparent mask for compositing foreground objects into the current

http://www.w3.org/TR/SVG/intro.html (8 of 12)4/2/07 5:28 PM

http://www.ietf.org/rfc/rfc2396.txt

Introduction - SVG 1.1 - 20030114

background. See Masks.

non-local URI reference
A Uniform Resource Identifier [URI] that includes an <absoluteURI> or
<relativeURI> and thus (usually) represents a reference to a different
document or an element within a different document. See References and
the 'defs' element.

paint
A paint represents a way of putting color values onto the canvas. A paint
might consist of both color values and associated alpha values which
control the blending of colors against already existing color values on the
canvas. SVG supports three types of built-in paint: color, gradients and
patterns.

presentation attribute
An XML attribute on an SVG element which specifies a value for a given
property for that element. See Styling.

property
A parameter that helps specify how a document should be rendered. A
complete list of SVG's properties can be found in Property Index.
Properties are assigned to elements in the SVG language either by
presentation attributes on elements in the SVG language or by using a
styling language such as CSS [CSS2]. See Styling.

shape
A graphics element that is defined by some combination of straight lines
and curves. Specifically: 'path', 'rect', 'circle', 'ellipse', 'line', 'polyline',
'polygon'.

stroke
The operation of painting the outline of a shape or the outline of character
glyphs in a text string.

SVG canvas
The canvas onto which the SVG content is rendered. See the discussion
of the SVG canvas in the chapter on Coordinate Systems,
Transformations and Units.

http://www.w3.org/TR/SVG/intro.html (9 of 12)4/2/07 5:28 PM

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-CSS2/

Introduction - SVG 1.1 - 20030114

SVG document fragment
The XML document sub-tree which starts with an 'svg' element. An SVG
document fragment can consist of a stand-alone SVG document, or a
fragment of a parent XML document enclosed by an 'svg' element. When
an 'svg' element is a descendant of another 'svg' element, there are two
SVG document fragments, one for each 'svg' element. (One SVG
document fragment is contained within another SVG document fragment.)

SVG viewport
The viewport within the SVG canvas which defines the rectangular region
into which SVG content is rendered. See the discussion of the SVG
viewport in the chapter on Coordinate Systems, Transformations and
Units.

text content element
One of SVG's elements that can define a text string that is to be rendered
onto the canvas. SVG's text content elements are the following: 'text',
'tspan', 'tref', 'textPath' and 'altGlyph'.

transformation
A modification of the current transformation matrix (CTM) by providing a
supplemental transformation in the form of a set of simple transformations
specifications (such as scaling, rotation or translation) and/or one or more
transformation matrices. See Coordinate system transformations.

transformation matrix
Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x' y'
1] = [x y 1] * matrix. See current transformation matrix (CTM) and
Coordinate system transformations.

URI Reference
A Uniform Resource Identifier [URI] which serves as a reference to a file
or to an element within a file. See References and the 'defs' element.

user agent
The general definition of a user agent is an application that retrieves and
renders Web content, including text, graphics, sounds, video, images, and
other content types. A user agent may require additional user agents that
handle some types of content. For instance, a browser may run a
separate program or plug-in to render sound or video. User agents include

http://www.w3.org/TR/SVG/intro.html (10 of 12)4/2/07 5:28 PM

http://www.ietf.org/rfc/rfc2396.txt

Introduction - SVG 1.1 - 20030114

graphical desktop browsers, multimedia players, text browsers, voice
browsers, and assistive technologies such as screen readers, screen
magnifiers, speech synthesizers, onscreen keyboards, and voice input
software.

A "user agent" may or may not have the ability to retrieve and render SVG
content; however, an "SVG user agent" retrieves and renders SVG
content.

user coordinate system
In general, a coordinate system defines locations and distances on the
current canvas. The current user coordinate system is the coordinate
system that is currently active and which is used to define how
coordinates and lengths are located and computed, respectively, on the
current canvas. See initial user coordinate system and Coordinate system
transformations.

user space
A synonym for user coordinate system.

user units
A coordinate value or length expressed in user units represents a
coordinate value or length in the current user coordinate system. Thus, 10
user units represents a length of 10 units in the current user coordinate
system.

viewport
A rectangular region within the current canvas onto which graphics
elements are to be rendered. See the discussion of the SVG viewport in
the chapter on Coordinate Systems, Transformations and Units.

viewport coordinate system
In general, a coordinate system defines locations and distances on the
current canvas. The viewport coordinate system is the coordinate
system that is active at the start of processing of an 'svg' element, before
processing the optional viewBox attribute. In the case of an SVG
document fragment that is embedded within a parent document which
uses CSS to manage its layout, then the viewport coordinate system will
have the same orientation and lengths as in CSS, with the origin at the
top-left on the viewport. See The initial viewport and Establishing a new
viewport.

http://www.w3.org/TR/SVG/intro.html (11 of 12)4/2/07 5:28 PM

Introduction - SVG 1.1 - 20030114

viewport space
A synonym for viewport coordinate system.

viewport units
A coordinate value or length expressed in viewport units represents a
coordinate value or length in the viewport coordinate system. Thus, 10
viewport units represents a length of 10 units in the viewport coordinate
system.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/intro.html (12 of 12)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/copyright-notice.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Concepts - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

2 Concepts

Contents

● 2.1 Explaining the name: SVG
● 2.2 Important SVG concepts
● 2.3 Options for using SVG in Web pages

2.1 Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable
graphics, usable as an XML namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics,
scalable means not being limited to a single, fixed, pixel size. On the Web,
scalable means that a particular technology can grow to a large number of files,
a large number of users, a wide variety of applications. SVG, being a graphics
technology for the Web, is scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example
printed output uses the full resolution of the printer and can be displayed at the
same size on screens of different resolutions. The same SVG graphic can be
placed at different sizes on the same Web page, and re-used at different sizes
on different pages. SVG graphics can be magnified to see fine detail, or to aid
those with low vision.

http://www.w3.org/TR/SVG/concepts.html (1 of 6)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Concepts - SVG 1.1 - 20030114

SVG graphics are scalable because the same SVG content can be a stand-
alone graphic or can be referenced or included inside other SVG graphics,
thereby allowing a complex illustration to be built up in parts, perhaps by several
people. The symbol, marker and font capabilities promote re-use of graphical
components, maximize the advantages of HTTP caching and avoid the need for
a centralized registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives
greater flexibility compared to raster-only formats (such as PNG and JPEG)
which have to store information for every pixel of the graphic. Typically, vector
formats can also integrate raster images and can combine them with vector
information such as clipping paths to produce a complete illustration; SVG is no
exception.

Since all modern displays are raster-oriented, the difference between raster-only
and vector graphics comes down to where they are rasterized; client side in the
case of vector graphics, as opposed to already rasterized on the server. SVG
gives control over the rasterization process, for example to allow anti-aliased
artwork without the ugly aliasing typical of low quality vector implementations.
SVG also provides client-side raster filter effects, so that moving to a vector
format does not mean the loss of popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent
raw data such as financial information. They typically provide only rudimentary
graphical capabilities, often less capable than the HTML 'img' element. SVG fills
a gap in the market by providing a rich, structured description of vector and
mixed vector/raster graphics; it can be used stand-alone, or as an XML
namespace with other grammars.

XML

XML, a W3C Recommendation for structured information exchange, has
become extremely popular and is both widely and reliably implemented. By
being written in XML, SVG builds on this strong foundation and gains many
advantages such as a sound basis for internationalization, powerful structuring
capability, an object model, and so on. By building on existing, cleanly-
implemented specifications, XML-based grammars are open to implementation

http://www.w3.org/TR/SVG/concepts.html (2 of 6)4/2/07 5:28 PM

http://www.w3.org/TR/REC-xml

Concepts - SVG 1.1 - 20030114

without a huge reverse engineering effort.

Namespace

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also
intended to be used as one component in a multi-namespace XML application.
This multiplies the power of each of the namespaces used, to allow innovative
new content to be created. For example, SVG graphics may be included in a
document which uses any text-oriented XML namespace - including XHTML. A
scientific document, for example, might also use MathML for mathematics in the
document. The combination of SVG and SMIL leads to interesting, time based,
graphically rich presentations.

SVG is a good, general-purpose component for any multi-namespace grammar
that needs to use graphics.

Stylable

The advantages of style sheets in terms of presentational control, flexibility,
faster download and improved maintenance are now generally accepted,
certainly for use with text. SVG extends this control to the realm of graphics.

The combination of scripting, DOM and CSS is often termed "Dynamic HTML"
and is widely used for animation, interactivity and presentational effects. SVG
allows the same script-based manipulation of the document tree and the style
sheet.

2.2 Important SVG concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being
modelled. For textual formats, modelling is typically at the level of paragraphs
and phrases, rather than individual nouns, adverbs, or phonemes. Similarly,
SVG models graphics at the level of graphical objects rather than individual
points.

SVG provides a general path element, which can be used to create a huge
variety of graphical objects, and also provides common basic shapes such as
rectangles and ellipses. These are convenient for hand coding and may be used
in the same ways as the more general path element. SVG provides fine control

http://www.w3.org/TR/SVG/concepts.html (3 of 6)4/2/07 5:28 PM

http://www.w3.org/TR/MathML2/

Concepts - SVG 1.1 - 20030114

over the coordinate system in which graphical objects are defined and the
transformations that will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SVG would
provide. But which ones? There would always be additional symbols for
electronics, cartography, flowcharts, etc., that people would need that were not
provided until the "next version". SVG allows users to create, re-use and share
their own symbols without requiring a centralized registry. Communities of users
can create and refine the symbols that they need, without having to ask a
committee. Designers can be sure exactly of the graphical appearance of the
symbols they use and not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to
fit in with the rest of the graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages
to create blurs, shadows, lighting effects and so on. With the client-side
rasterization used with vector formats, such effects might be thought impossible.
SVG allows the declarative specification of filters, either singly or in combination,
which can be applied on the client side when the SVG is rendered. These are
specified in such a way that the graphics are still scalable and displayable at
different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used
and the exact spacing of the glyphs. In many cases, designers convert text to
outlines to avoid any font substitution problems. This means that the original text
is not present and thus searchability and accessibility suffer. In response to
feedback from designers, SVG includes font elements so that both text and
graphical appearance are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but
scripts are difficult to edit and interchange between authoring tools is harder.
Again in response to feedback from the design community, SVG includes

http://www.w3.org/TR/SVG/concepts.html (4 of 6)4/2/07 5:28 PM

Concepts - SVG 1.1 - 20030114

declarative animation elements which were designed collaboratively by the SVG
and SYMM Working Groups. This allows the animated effects common in
existing Web graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are a variety of ways in which SVG content can be included within a Web
page. Here are some of the options:

● A stand-alone SVG Web page
In this case, an SVG document (i.e., a Web resource whose MIME type is
"image/svg+xml") is loaded directly into a user agent such as a Web
browser. The SVG document is the Web page that is presented to the
user.

● Embedding by reference
In this case, a parent Web page references a separately stored SVG
document and specifies that the given SVG document should be
embedded as a component of the parent Web page. For HTML or
XHTML, here are three options:

❍ The HTML/XHTML 'img' element is the most common method for
using graphics in HTML pages. For faster display, the width and
height of the image can be given as attributes. One attribute that is
required is alt, used to give an alternate textual string for people
browsing with images off, or who cannot see the images. The string
cannot contain any markup. A longdesc attribute lets you point to a
longer description - often in HTML - which can have markup and
richer formatting.

❍ The HTML/XHTML 'object' element can contain other elements
nested within it, unlike 'img', which is empty. This means that
several different formats can be offered, using nested 'object'
elements, with a final textual alternative (including markup, links,
etc). The outermost element which can be displayed will be used.

❍ The HTML/XHTML 'applet' element which can invoke a Java applet
to view SVG content within the given Web page. These applets can
do many things, but a common task is to use them to display
images, particularly ones in unusual formats or which need to be
presented under the control of a program for some other reason.

● Embedding inline
In this case, SVG content is embedded inline directly within the parent
Web page. An example is an XHTML Web page with an SVG document
fragment textually included within the XHTML.

● External link, using the HTML 'a' element

http://www.w3.org/TR/SVG/concepts.html (5 of 6)4/2/07 5:28 PM

Concepts - SVG 1.1 - 20030114

This allows any stand-alone SVG viewer to be used, which can (but need
not) be a different program to that used to display HTML. This option
typically is used for unusual image formats.

● Referenced from a CSS2 or XSL property
When a user agent supports CSS-styled XML content or XSL Formatting
Objects and the user agent is a Conforming SVG Viewer, then that user
agent must support the ability to reference SVG resources wherever CSS
or XSL properties allow for the referencing of raster images, including the
ability to tile SVG graphics wherever necessary and the ability to
composite the SVG into the background if it has transparent portions.
Examples include the 'background-image' and 'list-style-image' properties
that are included in both CSS and XSL.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/concepts.html (6 of 6)4/2/07 5:28 PM

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers
http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-image
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-image
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Rendering Model - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

3 Rendering Model

Contents

● 3.1 Introduction
● 3.2 The painters model
● 3.3 Rendering Order
● 3.4 How groups are rendered
● 3.5 How elements are rendered
● 3.6 Types of graphics elements

❍ 3.6.1 Painting shapes and text
❍ 3.6.2 Painting raster images

● 3.7 Filtering painted regions
● 3.8 Clipping, masking and object opacity
● 3.9 Parent Compositing

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a
rendering (or imaging) model corresponding to the one described in this chapter.
A real implementation is not required to implement the model in this way, but the
result on any device supported by the implementation shall match that described
by this model.

The appendix on conformance requirements describes the extent to which an

http://www.w3.org/TR/SVG/render.html (1 of 5)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/conform.html

Rendering Model - SVG 1.1 - 20030114

actual implementation may deviate from this description. In practice an actual
implementation will deviate slightly because of limitations of the output device (e.
g. only a limited range of colors might be supported) and because of practical
limitations in implementing a precise mathematical model (e.g. for realistic
performance curves are approximated by straight lines, the approximation need
only be sufficiently precise to match the conformance requirements).

3.2 The painters model

SVG uses a "painters model" of rendering. Paint is applied in successive
operations to the output device such that each operation paints over some area
of the output device. When the area overlaps a previously painted area the new
paint partially or completely obscures the old. When the paint is not completely
opaque the result on the output device is defined by the (mathematical) rules for
compositing described under Alpha Blending.

3.3 Rendering Order

Elements in an SVG document fragment have an implicit drawing order, with the
first elements in the SVG document fragment getting "painted" first. Subsequent
elements are painted on top of previously painted elements.

3.4 How groups are rendered

Grouping elements such as the 'g' (see container elements) have the effect of
producing a temporary separate canvas initialized to transparent black onto
which child elements are painted. Upon the completion of the group, any filter
effects specified for the group are applied to create a modified temporary
canvas. The modified temporary canvas is composited into the background,
taking into account any group-level masking and opacity settings on the group.

3.5 How elements are rendered

Individual graphics elements are rendered as if each graphics element
represented its own group; thus, the effect is as if a temporary separate canvas
is created for each graphics element. The element is first painted onto the
temporary canvas (see Painting shapes and text and Painting raster images
below). Then any filter effects specified for the graphics element are applied to
create a modified temporary canvas. The modified temporary canvas is then

http://www.w3.org/TR/SVG/render.html (2 of 5)4/2/07 5:28 PM

Rendering Model - SVG 1.1 - 20030114

composited into the background, taking into account any clipping, masking and
object opacity settings on the graphics element.

3.6 Types of graphics elements

SVG supports three fundamental types of graphics elements that can be
rendered onto the canvas:

● Shapes, which represent some combination of straight line and curves
● Text, which represents some combination of character glyphs
● Raster images, which represent an array of values that specify the paint

color and opacity (often termed alpha) at a series of points on a
rectangular grid. (SVG requires support for specified raster image formats
under conformance requirements.)

3.6.1 Painting shapes and text

Shapes and text can be filled (i.e., apply paint to the interior of the shape) and
stroked (i.e., apply paint along the outline of the shape). A stroke operation is
centered on the outline of the object; thus, in effect, half of the paint falls on the
interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of
any combination of shapes, text and images) can be drawn at selected vertices.
Each marker symbol is painted as if its graphical content were expanded into the
SVG document tree just after the shape object which is using the given marker
symbol. The graphical contents of a marker symbol are rendered using the same
methods as graphics elements. Marker symbols are not applicable to text.

The fill is painted first, then the stroke, and then the marker symbols. The marker
symbols are rendered in order along the outline of the shape, from the start of
the shape to the end of the shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/
or stroke a shape with a semi-transparently drawn solid color, with different
opacity values for the fill and stroke operations.

The fill and stroke operations are entirely independent painting operations; thus,
if you both fill and stroke a shape, half of the stroke will be painted on top of part
of the fill.

http://www.w3.org/TR/SVG/render.html (3 of 5)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/conform.html

Rendering Model - SVG 1.1 - 20030114

SVG supports the following built-in types of paint which can be used in fill and
stroke operations:

● Solid color
● Gradients (linear and radial)
● Patterns

3.6.2 Painting raster images

When a raster image is rendered, the original samples are "resampled" using
standard algorithms to produce samples at the positions required on the output
device. Resampling requirements are discussed under conformance
requirements.

3.7 Filtering painted regions

SVG allows any painting operation to be filtered. (See Filter Effects.)

In this case the result must be as though the paint operations had been applied
to an intermediate canvas initialized to transparent black, of a size determined
by the rules given in Filter Effects then filtered by the processes defined in Filter
Effects.

3.8 Clipping, masking and object opacity

SVG allows any painting operation to be limited to a subregion of the output
device by clipping and masking. This is described in Clipping, Masking and
Compositing.

Clipping uses a path to define a region of the output device to which paint can be
applied. Any painting operation executed within the scope of the clipping must
be rendered such that only those parts of the device that fall within the clipping
region are affected by the painting operation. A clipping path can be thought of
as a mask wherein those pixels outside the clipping path are black with an alpha
value of zero and those pixels inside the clipping path are white with an alpha
value of one. "Within" is defined by the same rules used to determine the interior
of a path for painting. The clipping path is typically anti-aliased on low-resolution
devices (see 'shape-rendering'). Clipping is described in Clipping paths.

http://www.w3.org/TR/SVG/render.html (4 of 5)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/conform.html
http://www.w3.org/TR/SVG/conform.html

Rendering Model - SVG 1.1 - 20030114

Masking uses the luminance of the color channels and alpha channel in a
referenced SVG element to define a supplemental set of alpha values which are
multiplied to the alpha values already present in the graphics to which the mask
is applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a "global"
opacity to a set of rendering operations. In this case the mask is infinite, with a
color of white and an alpha channel of the given opacity value. (See 'opacity'
property.)

In all cases the SVG implementation must behave as though all painting and
filtering is first performed to an intermediate canvas which has been initialized to
transparent black. Then, alpha values on the intermediate canvas are multiplied
by the implicit alpha values from the clipping path, the alpha values from the
mask, and the alpha values from the 'opacity' property. The resulting canvas is
composited into the background using simple alpha blending. Thus if an area of
the output device is painted with a group opacity of 50% using opaque red paint
followed by opaque green paint the result is as though it had been painted with
just 50% opaque green paint. This is because the opaque green paint
completely obscures the red paint on the intermediate canvas before the
intermediate as a whole is rendered onto the output device.

3.9 Parent Compositing

SVG document fragments can be semi-opaque. In many environments (e.g.,
Web browsers), the SVG document fragment has a final compositing step where
the document as a whole is blended translucently into the background canvas.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/render.html (5 of 5)4/2/07 5:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Basic Data Types and Interfaces - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

4 Basic Data Types and Interfaces

Contents

● 4.1 Basic data types
● 4.2 Recognized color keyword names
● 4.3 Basic DOM interfaces

4.1 Basic data types

The common data types for SVG's properties and attributes fall into the following categories:

● <integer>: An <integer> is specified as an optional sign character ('+' or '-') followed by one or more digits "0" to
"9". If the sign character is not present, the number is non-negative.
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses (at a
minimum) -2147483648 to 2147483647.
Within the SVG DOM, an <integer> is represented as an long or an SVGAnimatedInteger.

● <number> (real number value): The specification of real number values is different for property values than for
XML attribute values.

❍ CSS2 [CSS2] states that a property value which is a <number> is specified in decimal notation (i.e., a
<decimal-number>), which consists of either an <integer>, or an optional sign character followed by zero
or more digits followed by a dot (.) followed by one or more digits. Thus, for conformance with CSS2, any
property in SVG which accepts <number> values is specified in decimal notation only.

❍ For SVG's XML attributes, to provide as much scalability in numeric values as possible, real number
values can be provided either in decimal notation or in scientific notation (i.e., a <scientific-number>),
which consists of a <decimal-number> immediately followed by the letter "e" or "E" immediately followed
by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a single-
precision floating point number (see [ICC32]) and has a range (at a minimum) of -3.4e+38F to +3.4e+38F.
It is recommended that higher precision floating point storage and computation be performed on operations such
as coordinate system transformations to provide the best possible precision and to prevent round-off errors.
Conforming High-Quality SVG Viewers are required to use at least double-precision floating point (see [ICC32])
for intermediate calculations on certain numerical operations.
Within the SVG DOM, a <number> is represented as a float or an SVGAnimatedNumber.

● <length>: A length is a distance measurement. The format of a <length> is a <number> optionally followed
immediately by a unit identifier. (Note that the specification of a <number> is different for property values than
for XML attribute values.)
If the <length> is expressed as a value without a unit identifier (e.g., 48), then the <length> represents a distance
in the current user coordinate system.
If one of the unit identifiers is provided (e.g., 12mm), then the <length> is processed according to the description
in Units.
Percentage values (e.g., 10%) depend on the particular property or attribute to which the percentage value has
been assigned. Two common cases are: (a) when a percentage value represents a percent of the viewport
(refer to the section that discusses Units in general), and (b) when a percentage value represents a percent of

http://www.w3.org/TR/SVG/types.html (1 of 29)4/2/07 5:30 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-CSS2/
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers
http://www.color.org/ICC-1A_1999-04.PDF

Basic Data Types and Interfaces - SVG 1.1 - 20030114

the bounding box on a given object (refer to the section that describes Object bounding box units).
Within the SVG DOM, a <length> is represented as an SVGLength or an SVGAnimatedLength.

● <coordinate>: A <coordinate> represents a <length> in the user coordinate system that is the given distance
from the origin of the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for
Y coordinates).
Within the SVG DOM, a <coordinate> is represented as an SVGLength or an SVGAnimatedLength since both
values have the same syntax.

● <list of xxx> (where xxx represents a value of some type): A list consists of a separated sequence of values.
The specification of lists is different for property values than for XML attribute values.

❍ Lists in property values are either comma-separated, with optional white space before or after the comma,
or space-separated, as specified either in the CSS2 specification (if the property is defined there) or in this
specification (if the property is not defined in the CSS2 specification).

❍ Unless explicitly described differently, lists within SVG's XML attributes can be either comma-separated,
with optional white space before or after the comma, or white space-separated.

White space in lists is defined as one or more of the following consecutive characters: "space" (Unicode code
32), "tab" (9), "line feed" (10), "carriage return" (13) and "form-feed" (12).
Within the SVG DOM, a <list of xxx> is represented by various custom interfaces, such as SVGTransformList.
Here is a description of the grammar for a <list of xxx>:

ListOfXXX:
 XXX
 | XXX comma-wsp ListOfXXX
comma-wsp:
 (wsp+ comma? wsp*) | (comma wsp*)
comma:
 ","
wsp:
 (#x20 | #x9 | #xD | #xA)

where XXX represents a particular type of value.

● <number-optional-number>: A special case of <list of xxx> where there are at least one and at most two
entries in the list and the entries are of type <number>.

● <angle>: An angle value is a <number> optionally followed immediately with an angle unit identifier. Angle unit
identifiers are:

❍ deg: degrees
❍ grad: grads
❍ rad: radians

For properties defined in [CSS2], an angle unit identifier must be provided. For SVG-specific attributes and
properties, the angle unit identifier is optional. If not provided, the angle value is assumed to be in degrees.
The corresponding SVG DOM interface definition for <angle> is an SVGAngle or an SVGAnimatedAngle.

● <color>: The basic type <color> is a CSS2-compatible specification for a color in the sRGB color space [SRGB].
<color> applies to SVG's use of the 'color' property and is a component of the definitions of properties 'fill',
'stroke' 'stop-color', 'solid-color', 'flood-color' and 'lighting-color', which also offer optional ICC-based color
specifications.
SVG supports all of the syntax alternatives for <color> defined in [CSS2-color-types], with the exception that
SVG contains an expanded list of recognized color keywords names.
A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB specification.
In addition to these color keywords, users may specify keywords that correspond to the colors used by objects in
the user's environment. The normative definition of these keywords is [CSS2 system colors].
The format of an RGB value in hexadecimal notation is a '#' immediately followed by either three or six
hexadecimal characters. The three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by
replicating digits, not by adding zeros. For example, #fb0 expands to #ffbb00. This ensures that white (#ffffff)
can be specified with the short notation (#fff) and removes any dependencies on the color depth of the display.
The format of an RGB value in the functional notation is 'rgb(' followed by a comma-separated list of three
numerical values (either three integer values or three percentage values) followed by ')'. The integer value 255
corresponds to 100%, and to F or FF in the hexadecimal notation: rgb(255,255,255) = rgb(100%,100%,100%) =
#FFF. White space characters are allowed around the numerical values. All RGB colors are specified in the
sRGB color space (see [SRGB]). Using sRGB provides an unambiguous and objectively measurable definition

http://www.w3.org/TR/SVG/types.html (2 of 29)4/2/07 5:30 PM

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.iec.ch/nr1899.htm

Basic Data Types and Interfaces - SVG 1.1 - 20030114

of the color, which can be related to international standards (see [COLORIMETRY]).
The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in particular, see the
[DOM2-CSS-RGBCOLOR]. SVG's extension to color, including the ability to specify ICC-based colors, are
represented in DOM interface SVGColor.

● <paint> : The values for properties 'fill' and 'stroke' are specifications of the type of paint to use when filling or
stroking a given graphics element. The available options and syntax for <paint> are described in Specifying paint.
Within the SVG DOM, <paint> is represented as an SVGPaint.

● <percentage>: The format of a percentage value is a <number> immediately followed by a '%'. Percentage
values are always relative to another value, for example a length. Each attribute or property that allows
percentages also defines the reference distance measurement to which the percentage refers.
Within the SVG DOM, a <percentage> is usually represented as an SVGLength or an SVGAnimatedLength.

● <transform-list> : The detailed description of the possible values for a <transform-list> are detailed in Modifying
the User Coordinate System: the transform attribute.
Within the SVG DOM, <transform-list> is represented as an SVGTransformList or an
SVGAnimatedTransformList.

● <uri> (Uniform Resource Identifiers [URI] references): A URI is the address of a resource on the Web. For the
specification of URI references in SVG, see URI references.
Within the SVG DOM, <uri> is represented as a DOMString or an SVGAnimatedString.

● <frequency>: Frequency values are used with aural properties. The normative definition of frequency values
can be found in [CSS2-AURAL]. A frequency value is a <number> immediately followed by a frequency unit
identifier. Frequency unit identifiers are:

❍ Hz: Hertz
❍ kHz: kilo Hertz

Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].

● <time>: A time value is a <number> immediately followed by a time unit identifier. Time unit identifiers are:
❍ ms: milliseconds
❍ s: seconds

Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

4.2 Recognized color keyword names

The following is the list of recognized color keywords that can be used as a keyword value for data type <color>:

aliceblue rgb(240, 248, 255)

antiquewhite rgb(250, 235, 215)

aqua rgb(0, 255, 255)

aquamarine rgb(127, 255, 212)

azure rgb(240, 255, 255)

beige rgb(245, 245, 220)

bisque rgb(255, 228, 196)

black rgb(0, 0, 0)

blanchedalmond rgb(255, 235, 205)

blue rgb(0, 0, 255)

blueviolet rgb(138, 43, 226)

brown rgb(165, 42, 42)

burlywood rgb(222, 184, 135)

cadetblue rgb(95, 158, 160)

chartreuse rgb(127, 255, 0)

chocolate rgb(210, 105, 30)

coral rgb(255, 127, 80)

lightpink rgb(255, 182, 193)

lightsalmon rgb(255, 160, 122)

lightseagreen rgb(32, 178, 170)

lightskyblue rgb(135, 206, 250)

lightslategray rgb(119, 136, 153)

lightslategrey rgb(119, 136, 153)

lightsteelblue rgb(176, 196, 222)

lightyellow rgb(255, 255, 224)

lime rgb(0, 255, 0)

limegreen rgb(50, 205, 50)

linen rgb(250, 240, 230)

magenta rgb(255, 0, 255)

maroon rgb(128, 0, 0)

mediumaquamarine rgb(102, 205, 170)

mediumblue rgb(0, 0, 205)

mediumorchid rgb(186, 85, 211)

mediumpurple rgb(147, 112, 219)

http://www.w3.org/TR/SVG/types.html (3 of 29)4/2/07 5:30 PM

http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-RGBColor
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html

Basic Data Types and Interfaces - SVG 1.1 - 20030114

cornflowerblue rgb(100, 149, 237)

cornsilk rgb(255, 248, 220)

crimson rgb(220, 20, 60)

cyan rgb(0, 255, 255)

darkblue rgb(0, 0, 139)

darkcyan rgb(0, 139, 139)

darkgoldenrod rgb(184, 134, 11)

darkgray rgb(169, 169, 169)

darkgreen rgb(0, 100, 0)

darkgrey rgb(169, 169, 169)

darkkhaki rgb(189, 183, 107)

darkmagenta rgb(139, 0, 139)

darkolivegreen rgb(85, 107, 47)

darkorange rgb(255, 140, 0)

darkorchid rgb(153, 50, 204)

darkred rgb(139, 0, 0)

darksalmon rgb(233, 150, 122)

darkseagreen rgb(143, 188, 143)

darkslateblue rgb(72, 61, 139)

darkslategray rgb(47, 79, 79)

darkslategrey rgb(47, 79, 79)

darkturquoise rgb(0, 206, 209)

darkviolet rgb(148, 0, 211)

deeppink rgb(255, 20, 147)

deepskyblue rgb(0, 191, 255)

dimgray rgb(105, 105, 105)

dimgrey rgb(105, 105, 105)

dodgerblue rgb(30, 144, 255)

firebrick rgb(178, 34, 34)

floralwhite rgb(255, 250, 240)

forestgreen rgb(34, 139, 34)

fuchsia rgb(255, 0, 255)

gainsboro rgb(220, 220, 220)

ghostwhite rgb(248, 248, 255)

gold rgb(255, 215, 0)

goldenrod rgb(218, 165, 32)

gray rgb(128, 128, 128)

grey rgb(128, 128, 128)

green rgb(0, 128, 0)

greenyellow rgb(173, 255, 47)

honeydew rgb(240, 255, 240)

hotpink rgb(255, 105, 180)

indianred rgb(205, 92, 92)

indigo rgb(75, 0, 130)

ivory rgb(255, 255, 240)

khaki rgb(240, 230, 140)

lavender rgb(230, 230, 250)

lavenderblush rgb(255, 240, 245)

lawngreen rgb(124, 252, 0)

mediumseagreen rgb(60, 179, 113)

mediumslateblue rgb(123, 104, 238)

mediumspringgreen rgb(0, 250, 154)

mediumturquoise rgb(72, 209, 204)

mediumvioletred rgb(199, 21, 133)

midnightblue rgb(25, 25, 112)

mintcream rgb(245, 255, 250)

mistyrose rgb(255, 228, 225)

moccasin rgb(255, 228, 181)

navajowhite rgb(255, 222, 173)

navy rgb(0, 0, 128)

oldlace rgb(253, 245, 230)

olive rgb(128, 128, 0)

olivedrab rgb(107, 142, 35)

orange rgb(255, 165, 0)

orangered rgb(255, 69, 0)

orchid rgb(218, 112, 214)

palegoldenrod rgb(238, 232, 170)

palegreen rgb(152, 251, 152)

paleturquoise rgb(175, 238, 238)

palevioletred rgb(219, 112, 147)

papayawhip rgb(255, 239, 213)

peachpuff rgb(255, 218, 185)

peru rgb(205, 133, 63)

pink rgb(255, 192, 203)

plum rgb(221, 160, 221)

powderblue rgb(176, 224, 230)

purple rgb(128, 0, 128)

red rgb(255, 0, 0)

rosybrown rgb(188, 143, 143)

royalblue rgb(65, 105, 225)

saddlebrown rgb(139, 69, 19)

salmon rgb(250, 128, 114)

sandybrown rgb(244, 164, 96)

seagreen rgb(46, 139, 87)

seashell rgb(255, 245, 238)

sienna rgb(160, 82, 45)

silver rgb(192, 192, 192)

skyblue rgb(135, 206, 235)

slateblue rgb(106, 90, 205)

slategray rgb(112, 128, 144)

slategrey rgb(112, 128, 144)

snow rgb(255, 250, 250)

springgreen rgb(0, 255, 127)

steelblue rgb(70, 130, 180)

tan rgb(210, 180, 140)

teal rgb(0, 128, 128)

thistle rgb(216, 191, 216)

tomato rgb(255, 99, 71)

http://www.w3.org/TR/SVG/types.html (4 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

lemonchiffon rgb(255, 250, 205)

lightblue rgb(173, 216, 230)

lightcoral rgb(240, 128, 128)

lightcyan rgb(224, 255, 255)

lightgoldenrodyellow rgb(250, 250, 210)

lightgray rgb(211, 211, 211)

lightgreen rgb(144, 238, 144)

lightgrey rgb(211, 211, 211)

turquoise rgb(64, 224, 208)

violet rgb(238, 130, 238)

wheat rgb(245, 222, 179)

white rgb(255, 255, 255)

whitesmoke rgb(245, 245, 245)

yellow rgb(255, 255, 0)

yellowgreen rgb(154, 205, 50)

4.3 Basic DOM interfaces

The following interfaces are defined below: SVGElement, SVGAnimatedBoolean, SVGAnimatedString, SVGStringList,
SVGAnimatedEnumeration, SVGAnimatedInteger, SVGNumber, SVGAnimatedNumber, SVGNumberList,
SVGAnimatedNumberList, SVGLength, SVGAnimatedLength, SVGLengthList, SVGAnimatedLengthList, SVGAngle,
SVGAnimatedAngle, SVGColor, SVGICCColor, SVGRect, SVGAnimatedRect, SVGUnitTypes, SVGStylable,
SVGLocatable, SVGTransformable, SVGTests, SVGLangSpace, SVGExternalResourcesRequired,
SVGFitToViewBox, SVGZoomAndPan, SVGViewSpec, SVGURIReference, SVGCSSRule, SVGRenderingIntent.

Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elements in the SVG language (e.g., the SVGPathElement
interface corresponds directly to the 'path' element in the language) are derivative from base class SVGElement.

IDL Definition

interface SVGElement : Element {
 attribute DOMString id;
 // raises DOMException on setting
 attribute DOMString xmlbase;
 // raises DOMException on setting
 readonly attribute SVGSVGElement ownerSVGElement;
 readonly attribute SVGElement viewportElement;
};

Attributes

DOMString id
The value of the id attribute on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString xmlbase
Corresponds to attribute xml:base on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly SVGSVGElement ownerSVGElement
The nearest ancestor 'svg' element. Null if the given element is the outermost 'svg' element.

readonly SVGElement viewportElement
The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if the
given element is the outermost 'svg' element.

http://www.w3.org/TR/SVG/types.html (5 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.

IDL Definition

interface SVGAnimatedBoolean {
 attribute boolean baseVal;
 // raises DOMException on setting
 readonly attribute boolean animVal;
};

Attributes

boolean baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly boolean animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.

Interface SVGAnimatedString

Used for attributes of type DOMString which can be animated.

IDL Definition

interface SVGAnimatedString {
 attribute DOMString baseVal;
 // raises DOMException on setting
 readonly attribute DOMString animVal;
};

Attributes

DOMString baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly DOMString animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.

Interface SVGStringList

http://www.w3.org/TR/SVG/types.html (6 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

This interface defines a list of DOMString objects.

SVGStringList has the same attributes and methods as other SVGxxxList interfaces. Implementers may consider
using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGStringList {
 readonly attribute unsigned long numberOfItems;
 void clear ()
 raises(DOMException);
 DOMString initialize (in DOMString newItem)
 raises(DOMException, SVGException);
 DOMString getItem (in unsigned long index)
 raises(DOMException);
 DOMString insertItemBefore (in DOMString newItem, in unsigned long index)
 raises(DOMException, SVGException);
 DOMString replaceItem (in DOMString newItem, in unsigned long index)
 raises(DOMException, SVGException);
 DOMString removeItem (in unsigned long index)
 raises(DOMException);
 DOMString appendItem (in DOMString newItem)
 raises(DOMException, SVGException);
};

Attributes

readonly unsigned long numberOfItems
The number of items in the list.

Methods
clear

Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter.
Parameters

in DOMString newItem The item which should become the only member of the list.
Return value

DOMString The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

getItem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The first item is
number 0.

Return value

http://www.w3.org/TR/SVG/types.html (7 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

DOMString The selected item.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

insertItemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list.
Parameters

in DOMString newItem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be inserted. The first
item is number 0.
If the index is equal to 0, then the new item is inserted at the front of the
list. If the index is greater than or equal to numberOfItems, then the new
item is appended to the end of the list.

Return value
DOMString The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

replaceItem
Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in DOMString newItem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is number 0.
Return value

DOMString The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

removeItem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is number 0.
Return value

DOMString The removed item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

appendItem
Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list.
Parameters

in DOMString newItem The item which is to be inserted into the list. The first item is number 0.
Return value

DOMString The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

http://www.w3.org/TR/SVG/types.html (8 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be animated.

IDL Definition

interface SVGAnimatedEnumeration {
 attribute unsigned short baseVal;
 // raises DOMException on setting
 readonly attribute unsigned short animVal;
};

Attributes

unsigned short baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly unsigned short animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.

Interface SVGAnimatedInteger

Used for attributes of basic type 'integer' which can be animated.

IDL Definition

interface SVGAnimatedInteger {
 attribute long baseVal;
 // raises DOMException on setting
 readonly attribute long animVal;
};

Attributes

long baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly long animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.

http://www.w3.org/TR/SVG/types.html (9 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Interface SVGNumber

Used for attributes of basic type 'number'.

IDL Definition

interface SVGNumber {
 attribute float value;
 // raises DOMException on setting
};

Attributes

float value
The value of the given attribute.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Interface SVGAnimatedNumber

Used for attributes of basic type 'number' which can be animated.

IDL Definition

interface SVGAnimatedNumber {
 attribute float baseVal;
 // raises DOMException on setting
 readonly attribute float animVal;
};

Attributes

float baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

readonly float animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property. If the given attribute or property is not currently being animated, contains the same value as
'baseVal'.

Interface SVGNumberList

This interface defines a list of SVGNumber objects.

SVGNumberList has the same attributes and methods as other SVGxxxList interfaces. Implementers may consider

http://www.w3.org/TR/SVG/types.html (10 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGNumberList {
 readonly attribute unsigned long numberOfItems;
 void clear ()
 raises(DOMException);
 SVGNumber initialize (in SVGNumber newItem)
 raises(DOMException, SVGException);
 SVGNumber getItem (in unsigned long index)
 raises(DOMException);
 SVGNumber insertItemBefore (in SVGNumber newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGNumber replaceItem (in SVGNumber newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGNumber removeItem (in unsigned long index)
 raises(DOMException);
 SVGNumber appendItem (in SVGNumber newItem)
 raises(DOMException, SVGException);
};

Attributes

readonly unsigned long numberOfItems
The number of items in the list.

Methods
clear

Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter.
Parameters

in SVGNumber newItem The item which should become the only member of the list.
Return value

SVGNumber The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

getItem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The first item is
number 0.

Return value
SVGNumber The selected item.

Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or

equal to numberOfItems.

http://www.w3.org/TR/SVG/types.html (11 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

insertItemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGNumber newItem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be inserted. The
first item is number 0.
If the index is equal to 0, then the new item is inserted at the front of the
list. If the index is greater than or equal to numberOfItems, then the new
item is appended to the end of the list.

Return value
SVGNumber The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

replaceItem
Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in SVGNumber newItem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is number 0.
Return value

SVGNumber The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

removeItem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is number 0.
Return value

SVGNumber The removed item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

appendItem
Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list.
Parameters

in SVGNumber newItem The item which is to be inserted into the list. The first item is number 0.
Return value

SVGNumber The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

Interface SVGAnimatedNumberList

http://www.w3.org/TR/SVG/types.html (12 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Used for attributes which take a list of numbers and which can be animated.

IDL Definition

interface SVGAnimatedNumberList {
 readonly attribute SVGNumberList baseVal;
 readonly attribute SVGNumberList animVal;
};

Attributes

readonly SVGNumberList baseVal
The base value of the given attribute before applying any animations.

readonly SVGNumberList animVal
If the given attribute or property is being animated, then this attribute contains the current animated value
of the attribute or property, and both the object itself and its contents are readonly. If the given attribute or
property is not currently being animated, then this attribute contains the same value as 'baseVal'.

Interface SVGLength

The SVGLength interface corresponds to the <length> basic data type.

IDL Definition

interface SVGLength {
 // Length Unit Types
 const unsigned short SVG_LENGTHTYPE_UNKNOWN = 0;
 const unsigned short SVG_LENGTHTYPE_NUMBER = 1;
 const unsigned short SVG_LENGTHTYPE_PERCENTAGE = 2;
 const unsigned short SVG_LENGTHTYPE_EMS = 3;
 const unsigned short SVG_LENGTHTYPE_EXS = 4;
 const unsigned short SVG_LENGTHTYPE_PX = 5;
 const unsigned short SVG_LENGTHTYPE_CM = 6;
 const unsigned short SVG_LENGTHTYPE_MM = 7;
 const unsigned short SVG_LENGTHTYPE_IN = 8;
 const unsigned short SVG_LENGTHTYPE_PT = 9;
 const unsigned short SVG_LENGTHTYPE_PC = 10;
 readonly attribute unsigned short unitType;
 attribute float value;
 // raises DOMException on setting
 attribute float valueInSpecifiedUnits;
 // raises DOMException on setting
 attribute DOMString valueAsString;
 // raises DOMException on setting
 void newValueSpecifiedUnits (in unsigned short unitType, in float valueInSpecifiedUnits);
 void convertToSpecifiedUnits (in unsigned short unitType);
};

Definition group Length Unit Types

Defined constants

http://www.w3.org/TR/SVG/types.html (13 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

SVG_LENGTHTYPE_UNKNOWN The unit type is not one of predefined unit types. It is invalid to
attempt to define a new value of this type or to attempt to switch
an existing value to this type.

SVG_LENGTHTYPE_NUMBER No unit type was provided (i.e., a unitless value was specified),
which indicates a value in user units.

SVG_LENGTHTYPE_PERCENTAGE A percentage value was specified.

SVG_LENGTHTYPE_EMS A value was specified using the "em" units defined in CSS2.

SVG_LENGTHTYPE_EXS A value was specified using the "ex" units defined in CSS2.

SVG_LENGTHTYPE_PX A value was specified using the "px" units defined in CSS2.

SVG_LENGTHTYPE_CM A value was specified using the "cm" units defined in CSS2.

SVG_LENGTHTYPE_MM A value was specified using the "mm" units defined in CSS2.

SVG_LENGTHTYPE_IN A value was specified using the "in" units defined in CSS2.

SVG_LENGTHTYPE_PT A value was specified using the "pt" units defined in CSS2.

SVG_LENGTHTYPE_PC A value was specified using the "pc" units defined in CSS2.
Attributes

readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.

float value
The value as an floating point value, in user units. Setting this attribute will cause valueInSpecifiedUnits
and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

float valueInSpecifiedUnits
The value as an floating point value, in the units expressed by unitType. Setting this attribute will cause
value and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString valueAsString
The value as a string value, in the units expressed by unitType. Setting this attribute will cause value and
valueInSpecifiedUnits to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Methods
newValueSpecifiedUnits

Reset the value as a number with an associated unitType, thereby replacing the values for all of the
attributes on the object.
Parameters

in unsigned short unitType The unitType for the value (e.g., SVG_LENGTHTYPE_MM).

in float valueInSpecifiedUnits The new value.
No Return Value
No Exceptions

convertToSpecifiedUnits
Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType.
Object attributes unitType, valueAsSpecified and valueAsString might be modified as a result of this
method. For example, if the original value were "0.5cm" and the method was invoked to convert to
millimeters, then the unitType would be changed to SVG_LENGTHTYPE_MM, valueAsSpecified would
be changed to the numeric value 5 and valueAsString would be changed to "5mm".
Parameters

in unsigned short unitType The unitType to switch to (e.g., SVG_LENGTHTYPE_MM).
No Return Value
No Exceptions

http://www.w3.org/TR/SVG/types.html (14 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Interface SVGAnimatedLength

Used for attributes of basic type 'length' which can be animated.

IDL Definition

interface SVGAnimatedLength {
 readonly attribute SVGLength baseVal;
 readonly attribute SVGLength animVal;
};

Attributes

readonly SVGLength baseVal
The base value of the given attribute before applying any animations.

readonly SVGLength animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property, and both the object itself and its contents are readonly. If the given attribute or property is not
currently being animated, contains the same value as 'baseVal'.

Interface SVGLengthList

This interface defines a list of SVGLength objects.

SVGLengthList has the same attributes and methods as other SVGxxxList interfaces. Implementers may consider
using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGLengthList {
 readonly attribute unsigned long numberOfItems;
 void clear ()
 raises(DOMException);
 SVGLength initialize (in SVGLength newItem)
 raises(DOMException, SVGException);
 SVGLength getItem (in unsigned long index)
 raises(DOMException);
 SVGLength insertItemBefore (in SVGLength newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGLength replaceItem (in SVGLength newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGLength removeItem (in unsigned long index)
 raises(DOMException);
 SVGLength appendItem (in SVGLength newItem)
 raises(DOMException, SVGException);
};

Attributes

readonly unsigned long numberOfItems
The number of items in the list.

Methods

http://www.w3.org/TR/SVG/types.html (15 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item specified by
the parameter.
Parameters

in SVGLength newItem The item which should become the only member of the list.
Return value

SVGLength The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

getItem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The first item is
number 0.

Return value
SVGLength The selected item.

Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater than or

equal to numberOfItems.
insertItemBefore

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is already in
a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGLength newItem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be inserted. The
first item is number 0.
If the index is equal to 0, then the new item is inserted at the front of the
list. If the index is greater than or equal to numberOfItems, then the new
item is appended to the end of the list.

Return value
SVGLength The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

replaceItem
Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in SVGLength newItem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is number 0.
Return value

SVGLength The inserted item.
Exceptions

http://www.w3.org/TR/SVG/types.html (16 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

removeItem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is number 0.
Return value

SVGLength The removed item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater than or
equal to numberOfItems.

appendItem
Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its previous list
before it is inserted into this list.
Parameters

in SVGLength newItem The item which is to be inserted into the list. The first item is number 0.
Return value

SVGLength The inserted item.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong type of
object for the given list.

Interface SVGAnimatedLengthList

Used for attributes of type SVGLengthList which can be animated.

IDL Definition

interface SVGAnimatedLengthList {
 readonly attribute SVGLengthList baseVal;
 readonly attribute SVGLengthList animVal;
};

Attributes

readonly SVGLengthList baseVal
The base value of the given attribute before applying any animations.

readonly SVGLengthList animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property, and both the object itself and its contents are readonly. If the given attribute or property is not
currently being animated, contains the same value as 'baseVal'.

Interface SVGAngle

The SVGAngle interface corresponds to the <angle> basic data type.

http://www.w3.org/TR/SVG/types.html (17 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

IDL Definition

interface SVGAngle {
 // Angle Unit Types
 const unsigned short SVG_ANGLETYPE_UNKNOWN = 0;
 const unsigned short SVG_ANGLETYPE_UNSPECIFIED = 1;
 const unsigned short SVG_ANGLETYPE_DEG = 2;
 const unsigned short SVG_ANGLETYPE_RAD = 3;
 const unsigned short SVG_ANGLETYPE_GRAD = 4;
 readonly attribute unsigned short unitType;
 attribute float value;
 // raises DOMException on setting
 attribute float valueInSpecifiedUnits;
 // raises DOMException on setting
 attribute DOMString valueAsString;
 // raises DOMException on setting
 void newValueSpecifiedUnits (in unsigned short unitType, in float valueInSpecifiedUnits);
 void convertToSpecifiedUnits (in unsigned short unitType);
};

Definition group Angle Unit Types

Defined constants
SVG_ANGLETYPE_UNKNOWN The unit type is not one of predefined unit types. It is invalid to

attempt to define a new value of this type or to attempt to switch an
existing value to this type.

SVG_ANGLETYPE_UNSPECIFIED No unit type was provided (i.e., a unitless value was specified). For
angles, a unitless value is treated the same as if degrees were
specified.

SVG_ANGLETYPE_DEG The unit type was explicitly set to degrees.

SVG_ANGLETYPE_RAD The unit type is radians.

SVG_ANGLETYPE_GRAD The unit type is grads.
Attributes

readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.

float value
The angle value as a floating point value, in degrees. Setting this attribute will cause
valueInSpecifiedUnits and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

float valueInSpecifiedUnits
The angle value as a floating point value, in the units expressed by unitType. Setting this attribute will
cause value and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString valueAsString
The angle value as a string value, in the units expressed by unitType. Setting this attribute will cause
value and valueInSpecifiedUnits to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Methods
newValueSpecifiedUnits

Reset the value as a number with an associated unitType, thereby replacing the values for all of the

http://www.w3.org/TR/SVG/types.html (18 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

attributes on the object.
Parameters

in unsigned short unitType The unitType for the angle value (e.g., SVG_ANGLETYPE_DEG).

in float valueInSpecifiedUnits The angle value.
No Return Value
No Exceptions

convertToSpecifiedUnits
Preserve the same underlying stored value, but reset the stored unit identifier to the given unitType.
Object attributes unitType, valueAsSpecified and valueAsString might be modified as a result of this
method.
Parameters

in unsigned short unitType The unitType to switch to (e.g., SVG_ANGLETYPE_DEG).
No Return Value
No Exceptions

Interface SVGAnimatedAngle

Corresponds to all properties and attributes whose values can be basic type 'angle' and which are animatable.

IDL Definition

interface SVGAnimatedAngle {
 readonly attribute SVGAngle baseVal;
 readonly attribute SVGAngle animVal;
};

Attributes

readonly SVGAngle baseVal
The base value of the given attribute before applying any animations.

readonly SVGAngle animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property, and both the object itself and its contents are readonly. If the given attribute or property is not
currently being animated, contains the same value as 'baseVal'.

Interface SVGColor

The SVGColor interface corresponds to color value definition for properties 'stop-color', 'flood-color' and 'lighting-color'
and is a base class for interface SVGPaint. It incorporates SVG's extended notion of color, which incorporates ICC-
based color specifications.

Interface SVGColor does not correspond to the <color> basic data type. For the <color> basic data type, the applicable
DOM interfaces are defined in [DOM2-CSS]; in particular, see the [DOM2-CSS-RGBCOLOR].

IDL Definition

interface SVGColor : css::CSSValue {
 // Color Types
 const unsigned short SVG_COLORTYPE_UNKNOWN = 0;
 const unsigned short SVG_COLORTYPE_RGBCOLOR = 1;
 const unsigned short SVG_COLORTYPE_RGBCOLOR_ICCCOLOR = 2;

http://www.w3.org/TR/SVG/types.html (19 of 29)4/2/07 5:30 PM

http://www.w3.org/TR/SVG/refs.html#ref-DOM2-CSS
http://www.w3.org/TR/SVG/refs.html#ref-DOM2-CSS-RGBCOLOR

Basic Data Types and Interfaces - SVG 1.1 - 20030114

 const unsigned short SVG_COLORTYPE_CURRENTCOLOR = 3;
 readonly attribute unsigned short colorType;
 readonly attribute css::RGBColor rgbColor;
 readonly attribute SVGICCColor iccColor;
 void setRGBColor (in DOMString rgbColor)
 raises(SVGException);
 void setRGBColorICCColor (in DOMString rgbColor, in DOMString iccColor)
 raises(SVGException);
 void setColor (in unsigned short colorType, in DOMString rgbColor, in DOMString
iccColor)
 raises(SVGException);
};

Definition group Color Types

Defined constants
SVG_COLORTYPE_UNKNOWN The color type is not one of predefined types. It is

invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_COLORTYPE_RGBCOLOR An sRGB color has been specified without an
alternative ICC color specification.

SVG_COLORTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along with an
alternative ICC color specification.

SVG_COLORTYPE_CURRENTCOLOR Corresponds to when keyword 'currentColor' has been
specified.

Attributes
readonly unsigned short colorType

The type of the value as specified by one of the constants specified above.
readonly css::RGBColor rgbColor

The color specified in the sRGB color space.
readonly SVGICCColor iccColor

The alternate ICC color specification.
Methods

setRGBColor
Modifies the color value to be the specified sRGB color without an alternate ICC color specification.
Parameters

in DOMString rgbColor The new color value.
No Return Value
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid
value.

setRGBColorICCColor
Modifies the color value to be the specified sRGB color with an alternate ICC color specification.
Parameters

in DOMString rgbColor The new color value.

in DOMString iccColor The alternate ICC color specification.
No Return Value
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid
value.

setColor
Sets the colorType as specified by the parameters. If colorType requires an RGBColor, then rgbColor
must be a valid RGBColor object; otherwise, rgbColor must be null. If colorType requires an
SVGICCColor, then iccColor must be a valid SVGICCColor object; otherwise, iccColor must be null.
Parameters

in unsigned short colorType One of the defined constants for colorType.

http://www.w3.org/TR/SVG/types.html (20 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

in DOMString rgbColor The specification of an sRGB color, or null.

in DOMString iccColor The specification of an ICC color, or null.
No Return Value
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid
value.

Interface SVGICCColor

The SVGICCColor interface expresses an ICC-based color specification.

IDL Definition

interface SVGICCColor {
 attribute DOMString colorProfile;
 // raises DOMException on setting
 readonly attribute SVGNumberList colors;
};

Attributes

DOMString colorProfile

The name of the color profile, which is the first parameter of an ICC color specification.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the

value of a readonly attribute.
readonly SVGNumberList colors

The list of color values that define this ICC color. Each color value is an arbitrary floating point number.

Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying a minimum X value, a minimum Y value, and
a width and height, which are usually constrained to be non-negative.

IDL Definition

interface SVGRect {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float width;
 // raises DOMException on setting
 attribute float height;
 // raises DOMException on setting
};

http://www.w3.org/TR/SVG/types.html (21 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Attributes

float x
Corresponds to attribute x on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

float y
Corresponds to attribute y on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

float width
Corresponds to attribute width on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

float height
Corresponds to attribute height on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Interface SVGAnimatedRect

Used for attributes of type SVGRect which can be animated.

IDL Definition

interface SVGAnimatedRect {
 readonly attribute SVGRect baseVal;
 readonly attribute SVGRect animVal;
};

Attributes

readonly SVGRect baseVal
The base value of the given attribute before applying any animations.

readonly SVGRect animVal
If the given attribute or property is being animated, contains the current animated value of the attribute or
property, and both the object itself and its contents are readonly. If the given attribute or property is not
currently being animated, contains the same value as 'baseVal'.

Interface SVGUnitTypes

The SVGUnitTypes interface defines a commonly used set of constants and is a base interface used by
SVGGradientElement, SVGPatternElement, SVGClipPathElement, SVGMaskElement, and SVGFilterElement.

IDL Definition

http://www.w3.org/TR/SVG/types.html (22 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

interface SVGUnitTypes {
 // Unit Types
 const unsigned short SVG_UNIT_TYPE_UNKNOWN = 0;
 const unsigned short SVG_UNIT_TYPE_USERSPACEONUSE = 1;
 const unsigned short SVG_UNIT_TYPE_OBJECTBOUNDINGBOX = 2;
};

Definition group Unit Types

Defined constants
SVG_UNIT_TYPE_UNKNOWN The type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to attempt to
switch an existing value to this type.

SVG_UNIT_TYPE_USERSPACEONUSE Corresponds to value userSpaceOnUse.

SVG_UNIT_TYPE_OBJECTBOUNDINGBOX Corresponds to value objectBoundingBox.

Interface SVGStylable

IDL Definition

interface SVGStylable {
 readonly attribute SVGAnimatedString className;
 readonly attribute css::CSSStyleDeclaration style;
 css::CSSValue getPresentationAttribute (in DOMString name);
};

Attributes

readonly SVGAnimatedString className
Corresponds to attribute class on the given element.

readonly css::CSSStyleDeclaration style
Corresponds to attribute style on the given element. If the user agent does not support styling with CSS,
then this attribute must always have the value of null.

Methods
getPresentationAttribute

Returns the base (i.e., static) value of a given presentation attribute as an object of type CSSValue. The
returned object is live; changes to the objects represent immediate changes to the objects to which the
CSSValue is attached.
Parameters

in DOMString name Retrieves a "presentation attribute" by name.
Return value

css::CSSValue The static/base value of the given presentation attribute as a CSSValue, or NULL
if the given attribute does not have a specified value.

No Exceptions

Interface SVGLocatable

Interface SVGLocatable is for all elements which either have a transform attribute or don't have a transform attribute
but whose content can have a bounding box in current user space.

http://www.w3.org/TR/SVG/types.html (23 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

IDL Definition

interface SVGLocatable {
 readonly attribute SVGElement nearestViewportElement;
 readonly attribute SVGElement farthestViewportElement;
 SVGRect getBBox ();
 SVGMatrix getCTM ();
 SVGMatrix getScreenCTM ();
 SVGMatrix getTransformToElement (in SVGElement element)
 raises(SVGException);
};

Attributes

readonly SVGElement nearestViewportElement
The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if the
current element is the outermost 'svg' element.

readonly SVGElement farthestViewportElement
The farthest ancestor 'svg' element. Null if the current element is the outermost 'svg' element.

Methods
getBBox

Returns the tight bounding box in current user space (i.e., after application of the transform attribute, if
any) on the geometry of all contained graphics elements, exclusive of stroke-width and filter effects).
No Parameters
Return value

SVGRect An SVGRect object that defines the bounding box.
No Exceptions

getCTM
Returns the transformation matrix from current user units (i.e., after application of the transform attribute,
if any) to the viewport coordinate system for the nearestViewportElement.
No Parameters
Return value

SVGMatrix An SVGMatrix object that defines the CTM.
No Exceptions

getScreenCTM
Returns the transformation matrix from current user units (i.e., after application of the transform attribute,
if any) to the parent user agent's notice of a "pixel". For display devices, ideally this represents a physical
screen pixel. For other devices or environments where physical pixel sizes are not known, then an
algorithm similar to the CSS2 definition of a "pixel" can be used instead.
No Parameters
Return value

SVGMatrix An SVGMatrix object that defines the given transformation matrix.
No Exceptions

getTransformToElement
Returns the transformation matrix from the user coordinate system on the current element (after
application of the transform attribute, if any) to the user coordinate system on parameter element (after
application of its transform attribute, if any).
Parameters

in SVGElement element The target element.
Return value

SVGMatrix An SVGMatrix object that defines the transformation.
Exceptions

SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if the currently defined transformation
matrices make it impossible to compute the given matrix (e.g., because one of the
transformations is singular).

http://www.w3.org/TR/SVG/types.html (24 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Interface SVGTransformable

Interface SVGTransformable contains properties and methods that apply to all elements which have attribute
transform.

IDL Definition

interface SVGTransformable : SVGLocatable {
 readonly attribute SVGAnimatedTransformList transform;
};

Attributes

readonly SVGAnimatedTransformList transform
Corresponds to attribute transform on the given element.

Interface SVGTests

Interface SVGTests defines an interface which applies to all elements which have attributes requiredFeatures,
requiredExtensions and systemLanguage.

IDL Definition

interface SVGTests {
 readonly attribute SVGStringList requiredFeatures;
 readonly attribute SVGStringList requiredExtensions;
 readonly attribute SVGStringList systemLanguage;
 boolean hasExtension (in DOMString extension);
};

Attributes

readonly SVGStringList requiredFeatures
Corresponds to attribute requiredFeatures on the given element.

readonly SVGStringList requiredExtensions
Corresponds to attribute requiredExtensions on the given element.

readonly SVGStringList systemLanguage
Corresponds to attribute systemLanguage on the given element.

Methods
hasExtension

Returns true if the user agent supports the given extension, specified by a URI.
Parameters

in DOMString extension The name of the extension, expressed as a URI.
Return value

boolean True or false, depending on whether the given extension is supported.
No Exceptions

Interface SVGLangSpace

http://www.w3.org/TR/SVG/types.html (25 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

Interface SVGLangSpace defines an interface which applies to all elements which have attributes xml:lang and xml:
space.

IDL Definition

interface SVGLangSpace {
 attribute DOMString xmllang;
 // raises DOMException on setting
 attribute DOMString xmlspace;
 // raises DOMException on setting
};

Attributes

DOMString xmllang
Corresponds to attribute xml:lang on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Interface SVGExternalResourcesRequired

Interface SVGExternalResourcesRequired defines an interface which applies to all elements where this element or
one of its descendants can reference an external resource.

IDL Definition

interface SVGExternalResourcesRequired {
 readonly attribute SVGAnimatedBoolean externalResourcesRequired;
};

Attributes

readonly SVGAnimatedBoolean externalResourcesRequired
Corresponds to attribute externalResourcesRequired on the given element. Note that the SVG DOM
defines the attribute externalResourcesRequired as being of type SVGAnimatedBoolean, whereas the
SVG language definition says that externalResourcesRequired is not animated. Because the SVG
language definition states that externalResourcesRequired cannot be animated, the animVal will always be
the same as the baseVal.

Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes viewBox and
preserveAspectRatio.

http://www.w3.org/TR/SVG/types.html (26 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

IDL Definition

interface SVGFitToViewBox {
 readonly attribute SVGAnimatedRect viewBox;
 readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

Attributes

readonly SVGAnimatedRect viewBox
Corresponds to attribute viewBox on the given element.

readonly SVGAnimatedPreserveAspectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGZoomAndPan

The SVGZoomAndPan interface defines attribute "zoomAndPan" and associated constants.

IDL Definition

interface SVGZoomAndPan {
 // Zoom and Pan Types
 const unsigned short SVG_ZOOMANDPAN_UNKNOWN = 0;
 const unsigned short SVG_ZOOMANDPAN_DISABLE = 1;
 const unsigned short SVG_ZOOMANDPAN_MAGNIFY = 2;
 attribute unsigned short zoomAndPan;
 // raises DOMException on setting
};

Definition group Zoom and Pan Types

Defined constants
SVG_ZOOMANDPAN_UNKNOWN The enumeration was set to a value that is not one of predefined

types. It is invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_ZOOMANDPAN_DISABLE Corresponds to value disable.

SVG_ZOOMANDPAN_MAGNIFY Corresponds to value magnify.
Attributes

unsigned short zoomAndPan
Corresponds to attribute zoomAndPan on the given element. The value must be one of the zoom and pan
constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

Interface SVGViewSpec

The interface corresponds to an SVG View Specification.

http://www.w3.org/TR/SVG/types.html (27 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

IDL Definition

interface SVGViewSpec :
 SVGZoomAndPan,
 SVGFitToViewBox {
 readonly attribute SVGTransformList transform;
 readonly attribute SVGElement viewTarget;
 readonly attribute DOMString viewBoxString;
 readonly attribute DOMString preserveAspectRatioString;
 readonly attribute DOMString transformString;
 readonly attribute DOMString viewTargetString;
};

Attributes

readonly SVGTransformList transform
Corresponds to the transform setting on the SVG View Specification.

readonly SVGElement viewTarget
Corresponds to the viewTarget setting on the SVG View Specification.

readonly DOMString viewBoxString
Corresponds to the viewBox setting on the SVG View Specification.

readonly DOMString preserveAspectRatioString
Corresponds to the preserveAspectRatio setting on the SVG View Specification.

readonly DOMString transformString
Corresponds to the transform setting on the SVG View Specification.

readonly DOMString viewTargetString
Corresponds to the viewTarget setting on the SVG View Specification.

Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection of XLink
attributes, such as xlink:href, which define a URI reference.

IDL Definition

interface SVGURIReference {
 readonly attribute SVGAnimatedString href;
};

Attributes

readonly SVGAnimatedString href
Corresponds to attribute xlink:href on the given element.

Interface SVGCSSRule

SVG extends interface CSSRule with interface SVGCSSRule by adding an SVGColorProfileRule rule to allow for
specification of ICC-based color.

It is likely that this extension will become part of a future version of CSS and DOM.

http://www.w3.org/TR/SVG/types.html (28 of 29)4/2/07 5:30 PM

Basic Data Types and Interfaces - SVG 1.1 - 20030114

IDL Definition

interface SVGCSSRule : css::CSSRule {
 // Additional CSS RuleType to support ICC color specifications
 const unsigned short COLOR_PROFILE_RULE = 7;
};

Definition group Additional CSS RuleType to support ICC color specifications

Defined constants
COLOR_PROFILE_RULE The rule is an @color-profile.

Interface SVGRenderingIntent

The SVGRenderingIntent interface defines the enumerated list of possible values for 'rendering-intent' attributes or
descriptors.

IDL Definition

interface SVGRenderingIntent {
 // Rendering Intent Types
 const unsigned short RENDERING_INTENT_UNKNOWN = 0;
 const unsigned short RENDERING_INTENT_AUTO = 1;
 const unsigned short RENDERING_INTENT_PERCEPTUAL = 2;
 const unsigned short RENDERING_INTENT_RELATIVE_COLORIMETRIC = 3;
 const unsigned short RENDERING_INTENT_SATURATION = 4;
 const unsigned short RENDERING_INTENT_ABSOLUTE_COLORIMETRIC = 5;
};

Definition group Rendering Intent Types

Defined constants
RENDERING_INTENT_UNKNOWN The type is not one of predefined types. It is

invalid to attempt to define a new value of this
type or to attempt to switch an existing value to
this type.

RENDERING_INTENT_AUTO Corresponds to a value of auto.

RENDERING_INTENT_PERCEPTUAL Corresponds to a value of perceptual.

RENDERING_INTENT_RELATIVE_COLORIMETRIC Corresponds to a value of relative-colorimetric.

RENDERING_INTENT_SATURATION Corresponds to a value of saturation.

RENDERING_INTENT_ABSOLUTE_COLORIMETRIC Corresponds to a value of absolute-colorimetric.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/types.html (29 of 29)4/2/07 5:30 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Document Structure - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

5 Document Structure

Contents

● 5.1 Defining an SVG document fragment: the 'svg' element
❍ 5.1.1 Overview
❍ 5.1.2 The 'svg' element

● 5.2 Grouping: the 'g' element
❍ 5.2.1 Overview
❍ 5.2.2 The 'g' element

● 5.3 References and the 'defs' element
❍ 5.3.1 Overview
❍ 5.3.2 URI reference attributes
❍ 5.3.3 The 'defs' element

● 5.4 The 'desc' and 'title' elements
● 5.5 The 'symbol' element
● 5.6 The 'use' element
● 5.7 The 'image' element
● 5.8 Conditional processing

❍ 5.8.1 Conditional processing overview
❍ 5.8.2 The 'switch' element
❍ 5.8.3 The requiredFeatures attribute
❍ 5.8.4 The requiredExtensions attribute
❍ 5.8.5 The systemLanguage attribute
❍ 5.8.6 Applicability of test attributes

● 5.9 Specifying whether external resources are required for proper rendering
● 5.10 Common attributes

❍ 5.10.1 Attributes common to all elements: id and xml:base

❍ 5.10.2 The xml:lang and xml:space attributes
● 5.11 Core Attribute Module
● 5.12 Structure Module
● 5.13 Basic Structure Module
● 5.14 Container Attribute Module
● 5.15 Conditional Processing Module
● 5.16 Image Module
● 5.17 DOM interfaces

5.1 Defining an SVG document fragment: the 'svg' element

5.1.1 Overview

http://www.w3.org/TR/SVG/struct.html (1 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Document Structure - SVG 1.1 - 20030114

An SVG document fragment consists of any number of SVG elements contained within an 'svg' element.

An SVG document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to a very
simple SVG document fragment containing a single SVG graphics element such as a 'rect', to a complex, deeply nested
collection of container elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG document
fragment is an SVG document, or it can be embedded inline as a fragment within a parent XML document.

The following example shows simple SVG content embedded inline as a fragment within a parent XML document. Note
the use of XML namespaces to indicate that the 'svg' and 'ellipse' elements belong to the SVG namespace:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://example.org"
 xmlns:svg="http://www.w3.org/2000/svg">
 <!-- parent contents here -->
 <svg:svg width="4cm" height="8cm" version="1.1">
 <svg:ellipse cx="2cm" cy="4cm" rx="2cm" ry="1cm" />
 </svg:svg>
 <!-- ... -->
</parent>

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SVG
document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="4cm" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Four separate rectangles
 </desc>
 <rect x="0.5cm" y="0.5cm" width="2cm" height="1cm"/>
 <rect x="0.5cm" y="2cm" width="1cm" height="1.5cm"/>
 <rect x="3cm" y="0.5cm" width="1.5cm" height="2cm"/>
 <rect x="3.5cm" y="3cm" width="1cm" height="0.5cm"/>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x=".01cm" y=".01cm" width="4.98cm" height="3.98cm"
 fill="none" stroke="blue" stroke-width=".02cm" />
</svg>

View this example as SVG (SVG-enabled browsers only)

'svg' elements can appear in the middle of SVG content. This is the mechanism by which SVG document fragments can
be embedded within other SVG document fragments.

Another use for 'svg' elements within the middle of SVG content is to establish a new viewport. (See Establishing a new
viewport.)

In all cases, for compliance with the "Namespaces in XML" Recommendation [XML-NS], an SVG namespace declaration
must be provided so that all SVG elements are identified as belonging to the SVG namespace. The following are
possible ways to provide a namespace declaration. An xmlns attribute without a namespace prefix could be specified on
an 'svg' element, which means that SVG is the default namespace for all elements within the scope of the element with
the xmlns attribute:

<svg xmlns="http://www.w3.org/2000/svg"...>
 <rect .../>
</svg>

If a namespace prefix is specified on the xmlns attribute (e.g., xmlns:svg="http://www.w3.org/2000/svg"), then
the corresponding namespace is not the default namespace, so an explicit namespace prefix must be assigned to the

http://www.w3.org/TR/SVG/struct.html (2 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/images/struct/StandAlone01.svg
http://www.w3.org/TR/REC-xml-names/

Document Structure - SVG 1.1 - 20030114

elements:

<svg:svg xmlns:svg="http://www.w3.org/2000/svg"...>
 <svg:rect .../>
</svg:svg>

Namespace prefixes can be specified on ancestor elements (illustrated in the above example). For more information,
refer to the "Namespaces in XML" Recommendation [XML-NS].

5.1.2 The 'svg' element

<!-- svg: SVG Document Element -->
<!ENTITY % SVG.svg.extra.content "" >
<!ENTITY % SVG.svg.element "INCLUDE" >
<![%SVG.svg.element;[
<!ENTITY % SVG.svg.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.svg.extra.content;)*"

>
<!ELEMENT %SVG.svg.qname; %SVG.svg.content; >

<!-- end of SVG.svg.element -->]]>
<!ENTITY % SVG.svg.attlist "INCLUDE" >
<![%SVG.svg.attlist;[
<!ATTLIST %SVG.svg.qname;

 %SVG.xmlns.attrib;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.DocumentEvents.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 viewBox %ViewBoxSpec.datatype; #IMPLIED
 preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
 zoomAndPan (disable | magnify) 'magnify'
 version %Number.datatype; #FIXED '1.1'

 baseProfile %Text.datatype; #IMPLIED
 contentScriptType %ContentType.datatype; 'text/ecmascript'
 contentStyleType %ContentType.datatype; 'text/css'
>
<!-- end of SVG.svg.attlist -->]]>

Attribute definitions:

xmlns [:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. Refer to the "Namespaces in XML" Recommendation
[XML-NS].
Animatable: no.

version = "<number>"
Indicates the SVG language version to which this document fragment conforms.
In SVG 1.0, this attribute was fixed to the value "1.0". For SVG 1.1, the attribute should have the value "1.1".

http://www.w3.org/TR/SVG/struct.html (3 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

Document Structure - SVG 1.1 - 20030114

Animatable: no.
baseProfile = profile-name

Describes the minimum SVG language profile that the author believes is necessary to correctly render the content.
The attribute does not specify any processing restrictions; It can be considered metadata. For example, the value
of the attribute could be used by an authoring tool to warn the user when they are modifying the document beyond
the scope of the specified baseProfile. Each SVG profile should define the text that is appropriate for this attribute.
If the attribute is not specified, the effect is as if a value of "none" were specified.
Animatable: no.

x = "<coordinate>"
(Has no meaning or effect on outermost 'svg' elements.)
The x-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
(Has no meaning or effect on outermost 'svg' elements.)
The y-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
For outermost 'svg' elements, the intrinsic width of the SVG document fragment. For embedded 'svg' elements,
the width of the rectangular region into which the 'svg' element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "100%" were specified.
Animatable: yes.

height = "<length>"
For outermost 'svg' elements, the intrinsic height of the SVG document fragment. For embedded 'svg' elements,
the height of the rectangular region into which the 'svg' element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "100%" were specified.
Animatable: yes.

If an SVG document is likely to be referenced as a component of another document, the author will often want to include
a viewBox attribute on the outermost 'svg' element of the referenced document. This attribute provides a convenient way
to design SVG documents to scale-to-fit into an arbitrary viewport.

5.2 Grouping: the 'g' element

5.2.1 Overview

The 'g' element is a container element for grouping together related graphics elements.

Grouping constructs, when used in conjunction with the 'desc' and 'title' elements, provide information about document
structure and semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and
thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using the id attribute. Named groups are needed
for several purposes such as animation and re-usable objects.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="5cm" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Two groups, each of two rectangles
 </desc>
 <g id="group1" fill="red" >

http://www.w3.org/TR/SVG/struct.html (4 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/access.html

Document Structure - SVG 1.1 - 20030114

 <rect x="1cm" y="1cm" width="1cm" height="1cm" />
 <rect x="3cm" y="1cm" width="1cm" height="1cm" />
 </g>
 <g id="group2" fill="blue" >
 <rect x="1cm" y="3cm" width="1cm" height="1cm" />
 <rect x="3cm" y="3cm" width="1cm" height="1cm" />
 </g>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x=".01cm" y=".01cm" width="4.98cm" height="4.98cm"
 fill="none" stroke="blue" stroke-width=".02cm" />
</svg>

View this example as SVG (SVG-enabled browsers only)

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following is possible:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Groups can nest
 </desc>
 <g>
 <g>
 <g>
 </g>
 </g>
 </g>
</svg>

Any element that is not contained within a 'g' is treated (at least conceptually) as if it were in its own group.

5.2.2 The 'g' element

<!ENTITY % SVG.g.extra.content "" >
<!ENTITY % SVG.g.element "INCLUDE" >
<![%SVG.g.element;[
<!ENTITY % SVG.g.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.g.extra.content;)*"

>
<!ELEMENT %SVG.g.qname; %SVG.g.content; >

<!-- end of SVG.g.element -->]]>
<!ENTITY % SVG.g.attlist "INCLUDE" >

5.3 References and the 'defs' element

5.3.1 Overview

SVG makes extensive use of URI references [URI] to other objects. For example, to fill a rectangle with a linear
gradient, you first define a 'linearGradient' element and give it an ID, as in:

<linearGradient id="MyGradient">...</linearGradient>

http://www.w3.org/TR/SVG/struct.html (5 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/images/struct/grouping01.svg
http://www.ietf.org/rfc/rfc2396.txt

Document Structure - SVG 1.1 - 20030114

You then reference the linear gradient as the value of the 'fill' property for the rectangle, as in:

<rect style="fill:url(#MyGradient)"/>

URI references are defined in either of the following forms:

<URI-reference> = [<absoluteURI> | <relativeURI>] ["#" <elementID>] -or-
<URI-reference> = [<absoluteURI> | <relativeURI>] ["#xpointer(id(" <elementID> "))"]

where <elementID> is the ID of the referenced element.

(Note that the two forms above (i.e., #<elementID> and #xpointer(id(<elementID>))) are formulated in syntaxes compatible
with "XML Pointer Language (XPointer)" [XPTR]. These two formulations of URI references are the only XPointer
formulations that are required in SVG 1.0 user agents.)

SVG supports two types of URI references:

● local URI references, where the URI reference does not contain an <absoluteURI> or <relativeURI> and thus only
contains a fragment identifier (i.e., #<elementID> or #xpointer(id<elementID>))

● non-local URI references, where the URI reference does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:

● URI references to nodes that do not exist shall be treated as invalid references.
● URI references to elements which are inappropriate targets for the given reference shall be treated as invalid

references (see list below for appropriate targets). For example, the 'clip-path' property can only refer to 'clipPath'
elements. The property setting clip-path:url(#MyElement) is an invalid reference if the referenced element is not a
'clipPath'.

● URI references that directly or indirectly reference themselves are treated as invalid circular references.

The following list describes the elements and properties that allow URI references and the valid target types for those
references:

● the 'a' element can reference any local or non-local resource
● the 'altGlyph' element must reference either an 'altGlyphDef' element or a 'glyph' element
● the 'animate' element (see Identifying the target element for an animation for reference rules)
● the 'animateColor' element (see Identifying the target element for an animation for reference rules)
● the 'animateMotion' element (see Identifying the target element for an animation for reference rules)
● the 'animateTransform' element (see Identifying the target element for an animation for reference rules)
● the 'clip-path' property must reference a 'clipPath' element
● the 'color-profile' element must reference an ICC profile resource
● the 'color-profile' property must reference an ICC profile resource or a 'color-profile' element
● the 'src' descriptor on an @color-profile definition must reference an ICC profile resource or a 'color-profile' element
● the 'cursor' element must reference a resource that can provide an image for the cursor graphic
● the 'cursor' property must reference a resource that can provide an image for the cursor graphic
● the 'feImage' element must reference any local or non-local resource
● the 'fill' property (see Specifying paint for reference rules)
● the 'filter' element must reference a 'filter' element
● the 'filter' property must reference a 'filter' element
● the 'image' element must reference any local or non-local resource
● the 'linearGradient' element must reference a 'linearGradient' or 'radialGradient' element
● the 'marker','marker-start','marker-mid' and 'marker-end' properties must reference a 'marker' element.
● the 'mask' property must reference a 'mask' element
● the 'pattern' element must reference a 'pattern' element
● the 'radialGradient' element must reference a 'linearGradient' or 'radialGradient' element
● the 'script' element must reference an external resource that provides the script content
● the 'stroke' property (see Specifying paint for reference rules)

http://www.w3.org/TR/SVG/struct.html (6 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/xptr

Document Structure - SVG 1.1 - 20030114

● the 'textpath' element must reference a 'path' element
● the 'tref' element can reference any SVG element
● the 'set' element (see Identifying the target element for an animation for reference rules)
● the 'use' element can reference any local or non-local resource

The following rules apply to the processing of invalid URI references:

● An invalid local URI reference (i.e., an invalid references to a node within the current document) represents an
error (see Error processing), apart from the xlink:href attribute on the 'a' element and the properties that allow for
backup values in the case where the URI reference is invalid (see 'fill' and 'stroke').

● An invalid circular URI reference represents an error (see Error processing).
● When attribute externalResourcesRequired has been set to true on the referencing element or one of its ancestors,

then an unresolved external URI reference (i.e., a resource that cannot be located) represents an error (see Error
processing).

It is recommended that, wherever possible, referenced elements be defined inside of a 'defs' element. Among the
elements that are always referenced: 'altGlyphDef', 'clipPath', 'cursor', 'filter', 'linearGradient', 'marker', 'mask', 'pattern',
'radialGradient' and 'symbol'. Defining these elements inside of a 'defs' element promotes understandability of the SVG
content and thus promotes accessibility.

5.3.2 URI reference attributes

A URI reference is specified within an href attribute in the XLink [XLINK] namespace. If the default prefix of 'xlink:' is used
for attributes in the XLink namespace, then the attribute will be specified as xlink:href. The value of this attribute is a URI
reference for the desired resource (or resource fragment).

The value of the href attribute must be a URI reference as defined in [RFC2396], or must result in a URI reference after
the escaping procedure described below is applied. The procedure is applied when passing the URI reference to a URI
resolver.

Some characters are disallowed in URI references, even if they are allowed in XML; the disallowed characters include all
non-ASCII characters, plus the excluded characters listed in Section 2.4 of [RFC2396], except for the number sign (#)
and percent sign (%) and the square bracket characters re-allowed in [RFC2732]. Disallowed characters must be
escaped as follows:

1. Each disallowed character is converted to UTF-8 [RFC2279] as one or more bytes.

2. Any bytes corresponding to a disallowed character are escaped with the URI escaping mechanism (that is,
converted to %HH, where HH is the hexadecimal notation of the byte value).

3. The original character is replaced by the resulting character sequence.

Because it is impractical for any application to check that a value is a URI reference, this specification follows the lead of
[RFC2396] in this matter and imposes no such conformance testing requirement on SVG applications.

If the URI reference is relative, its absolute version must be computed by the method of [XML-Base] before use.

For locators into XML resources, the format of the fragment identifier (if any) used within the URI reference is specified
by the XPointer specification [XPTR].

Additional XLink attributes can be specified that provide supplemental information regarding the referenced resource.
These additional attributes are included in the DTD in the following entities. The three entity definitions differ only in the
value of xlink:show, which has the value other in the first two entities and the value embed in the third. The first two entity
definitions are used in most element definitions which reference resources. The third entity definition is used by elements
'use', 'image' and 'feImage'.

http://www.w3.org/TR/SVG/struct.html (7 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xptr
http://www.w3.org/TR/SVG/svgdtd.html

Document Structure - SVG 1.1 - 20030114

<!ENTITY % SVG.XLink.extra.attrib "" >
<!ENTITY % SVG.XLink.attrib

 "%XLINK.xmlns.attrib;

 %XLINK.pfx;type (simple) #FIXED 'simple'
 %XLINK.pfx;href %URI.datatype; #IMPLIED

 %XLINK.pfx;role %URI.datatype; #IMPLIED

 %XLINK.pfx;arcrole %URI.datatype; #IMPLIED

 %XLINK.pfx;title CDATA #IMPLIED
 %XLINK.pfx;show (other) 'other'
 %XLINK.pfx;actuate (onLoad) #FIXED 'onLoad'
 %SVG.XLink.extra.attrib;"
>
<!ENTITY % SVG.XLinkRequired.extra.attrib "" >
<!ENTITY % SVG.XLinkRequired.attrib

 "%XLINK.xmlns.attrib;

 %XLINK.pfx;type (simple) #FIXED 'simple'
 %XLINK.pfx;href %URI.datatype; #REQUIRED

 %XLINK.pfx;role %URI.datatype; #IMPLIED

 %XLINK.pfx;arcrole %URI.datatype; #IMPLIED

 %XLINK.pfx;title CDATA #IMPLIED
 %XLINK.pfx;show (other) 'other'
 %XLINK.pfx;actuate (onLoad) #FIXED 'onLoad'
 %SVG.XLinkRequired.extra.attrib;"
>
<!ENTITY % SVG.XLinkEmbed.extra.attrib "" >
<!ENTITY % SVG.XLinkEmbed.attrib

 "%XLINK.xmlns.attrib;

 %XLINK.pfx;type (simple) #FIXED 'simple'
 %XLINK.pfx;href %URI.datatype; #REQUIRED

 %XLINK.pfx;role %URI.datatype; #IMPLIED

 %XLINK.pfx;arcrole %URI.datatype; #IMPLIED

 %XLINK.pfx;title CDATA #IMPLIED
 %XLINK.pfx;show (embed) 'embed'
 %XLINK.pfx;actuate (onLoad) #FIXED 'onLoad'
 %SVG.XLinkEmbed.extra.attrib;"
>
<!ENTITY % SVG.XLinkReplace.extra.attrib "" >
<!ENTITY % SVG.XLinkReplace.attrib

 "%XLINK.xmlns.attrib;

 %XLINK.pfx;type (simple) #FIXED 'simple'
 %XLINK.pfx;href %URI.datatype; #REQUIRED

 %XLINK.pfx;role %URI.datatype; #IMPLIED

 %XLINK.pfx;arcrole %URI.datatype; #IMPLIED

 %XLINK.pfx;title CDATA #IMPLIED
 %XLINK.pfx;show (new | replace) 'replace'
 %XLINK.pfx;actuate (onRequest) #FIXED 'onRequest'
 %SVG.XLinkReplace.extra.attrib;"
>

xmlns [:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace
available to the current element. Refer to the "Namespaces in XML" Recommendation [XML-NS].
Animatable: no.

xlink:type = 'simple'
Identifies the type of XLink being used. In SVG, only simple links are available. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: no.

xlink:role = '<uri>'
A URI reference that identifies some resource that describes the intended property. The value must be a URI
reference as defined in [RFC2396], except that if the URI scheme used is allowed to have absolute and relative
forms, the URI portion must be absolute. When no value is supplied, no particular role value is to be inferred.

http://www.w3.org/TR/SVG/struct.html (8 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/xlink//
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt

Document Structure - SVG 1.1 - 20030114

Disallowed URI reference characters in these attribute values must be specially encoded as described earlier in
this section. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:arcrole = '<uri>'
A URI reference that identifies some resource that describes the intended property. The value must be a URI
reference as defined in [RFC2396], except that if the URI scheme used is allowed to have absolute and relative
forms, the URI portion must be absolute. When no value is supplied, no particular role value is to be inferred.
Disallowed URI reference characters in these attribute values must be specially encoded as described earlier in
this section. The arcrole attribute corresponds to the [RDF] notion of a property, where the role can be interpreted
as stating that "starting-resource HAS arc-role ending-resource." This contextual role can differ from the meaning
of an ending resource when taken outside the context of this particular arc. For example, a resource might
generically represent a "person," but in the context of a particular arc it might have the role of "mother" and in the
context of a different arc it might have the role of "daughter." Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'
The title attribute is used to describe the meaning of a link or resource in a human-readable fashion, along the
same lines as the role or arcrole attribute. A value is optional; if a value is supplied, it should contain a string that
describes the resource. The use of this information is highly dependent on the type of processing being done. It
may be used, for example, to make titles available to applications used by visually impaired users, or to create a
table of links, or to present help text that appears when a user lets a mouse pointer hover over a starting resource.
Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:show = 'embed'
An application traversing to the ending resource should load its presentation in place of the presentation of the
starting resource. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:actuate = 'onLoad'
Indicates that the application should traverse to the ending resource immediately on loading the starting resource.
Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

In all cases, for compliance with the "Namespaces in XML" Recommendation [XML-NS], an explicit XLink namespace
declaration must be provided whenever one of the above XLink attributes is used within SVG content. One simple way to
provide such an XLink namespace declaration is to include an xmlns attribute for the XLink namespace on the outermost
'svg' element for content that uses XLink attributes. For example:

<svg xmlns:xlink="http://www.w3.org/1999/xlink"...>
 <image xlink:href="foo.png" .../>
</svg>

5.3.3 The 'defs' element

The 'defs' element is a container element for referenced elements. For understandability and accessibility reasons, it is
recommended that, whenever possible, referenced elements be defined inside of a 'defs'.

The content model for 'defs' is the same as for the 'g' element; thus, any element that can be a child of a 'g' can also be a
child of a 'defs', and vice versa.

Elements that are descendants of a 'defs' are not rendered directly; they are prevented from becoming part of the
rendering tree just as if the 'defs' element were a 'g' element and the 'display' property were set to none. Note, however,
that the descendants of a 'defs' are always present in the source tree and thus can always be referenced by other
elements; thus, the value of the 'display' property on the 'defs' element or any of its descendants does not prevent those
elements from being referenced by other elements.

http://www.w3.org/TR/SVG/struct.html (9 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/SVG/access.html

Document Structure - SVG 1.1 - 20030114

<!ENTITY % SVG.defs.extra.content "" >
<!ENTITY % SVG.defs.element "INCLUDE" >
<![%SVG.defs.element;[
<!ENTITY % SVG.defs.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.defs.extra.content;)*"

>
<!ELEMENT %SVG.defs.qname; %SVG.defs.content; >

<!-- end of SVG.defs.element -->]]>
<!ENTITY % SVG.defs.attlist "INCLUDE" >
<![%SVG.defs.attlist;[
<!ATTLIST %SVG.defs.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.External.attrib;

 transform %TransformList.datatype; #IMPLIED

>

To provide some SVG user agents with an opportunity to implement efficient implementations in streaming
environments, creators of SVG content are encouraged to place all elements which are targets of local URI references
within a 'defs' element which is a direct child of one of the ancestors of the referencing element. For example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.
dtd">
<svg width="8cm" height="3cm"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Local URI references within ancestor's 'defs' element.</desc>
 <defs>
 <linearGradient id="Gradient01">
 <stop offset="20%" stop-color="#39F" />
 <stop offset="90%" stop-color="#F3F" />
 </linearGradient>
 </defs>
 <rect x="1cm" y="1cm" width="6cm" height="1cm"
 fill="url(#Gradient01)" />
 <!-- Show outline of canvas using 'rect' element -->
 <rect x=".01cm" y=".01cm" width="7.98cm" height="2.98cm"
 fill="none" stroke="blue" stroke-width=".02cm" />
</svg>

View this example as SVG (SVG-enabled browsers only)

In the document above, the linear gradient is defined within a 'defs' element which is the direct child of the 'svg' element,
which in turn is an ancestor of the 'rect' element which references the linear gradient. Thus, the above document
conforms to the guideline.

5.4 The 'desc' and 'title' elements

Each container element or graphics element in an SVG drawing can supply a 'desc' and/or a 'title' description string
where the description is text-only. When the current SVG document fragment is rendered as SVG on visual media, 'desc'
and 'title' elements are not rendered as part of the graphics. User agents may, however, for example, display the 'title'

http://www.w3.org/TR/SVG/struct.html (10 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/images/struct/defs01.svg

Document Structure - SVG 1.1 - 20030114

element as a tooltip, as the pointing device moves over particular elements. Alternate presentations are possible, both
visual and aural, which display the 'desc' and 'title' elements but do not display 'path' elements or other graphics
elements. This is readily achieved by using a different (perhaps user) style sheet. For deep hierarchies, and for following
'use' element references, it is sometimes desirable to allow the user to control how deep they drill down into descriptive
text.

<!ENTITY % SVG.desc.extra.content "" >
<!ENTITY % SVG.desc.element "INCLUDE" >
<![%SVG.desc.element;[
<!ENTITY % SVG.desc.content
 "(#PCDATA %SVG.desc.extra.content;)*"
>
<!ELEMENT %SVG.desc.qname; %SVG.desc.content; >

<!-- end of SVG.desc.element -->]]>
<!ENTITY % SVG.desc.attlist "INCLUDE" >
<![%SVG.desc.attlist;[
<!ATTLIST %SVG.desc.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

>

<!ENTITY % SVG.title.extra.content "" >
<!ENTITY % SVG.title.element "INCLUDE" >
<![%SVG.title.element;[
<!ENTITY % SVG.title.content
 "(#PCDATA %SVG.title.extra.content;)*"
>
<!ELEMENT %SVG.title.qname; %SVG.title.content; >

The following is an example. In typical operation, the SVG user agent would not render the 'desc' and 'title' elements but
would render the remaining contents of the 'g' element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg SYSTEM "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
<g>
 <title>
 Company sales by region
 </title>
 <desc>
 This is a bar chart which shows
 company sales by region.
 </desc>
 <!-- Bar chart defined as vector data -->
</g>
</svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc xmlns:mydoc="http://example.org/mydoc">
 <mydoc:title>This is an example SVG file</mydoc:title>
 <mydoc:para>The global description uses markup from the
 <mydoc:emph>mydoc</mydoc:emph> namespace.</mydoc:para>
 </desc>
 <g>
 <!-- the picture goes here -->

http://www.w3.org/TR/SVG/struct.html (11 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

 </g>
</svg>

Authors should always provide a 'title' child element to the outermost 'svg' element within a stand-alone SVG document.
The 'title' child element to an 'svg' element serves the purposes of identifying the content of the given SVG document
fragment. Since users often consult documents out of context, authors should provide context-rich titles. Thus, instead of
a title such as "Introduction", which doesn’t provide much contextual background, authors should supply a title such as
"Introduction to Medieval Bee-Keeping" instead. For reasons of accessibility, user agents should always make the
content of the 'title' child element to the outermost 'svg' element available to users. The mechanism for doing so depends
on the user agent (e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restriction on the
placement or number of the 'desc' and 'title' sub-elements. This flexibility is only present so that there will be a consistent
content model for container elements, because some container elements in SVG allow for mixed content, and because
the mixed content rules for XML [XML-MIXED] do not permit the desired restrictions. Representations of future versions
of the SVG language might use more expressive representations than DTDs which allow for more restrictive mixed
content rules. It is strongly recommended that at most one 'desc' and at most one 'title' element appear as a child of any
particular element, and that these elements appear before any other child elements (except possibly 'metadata'
elements) or character data content. If user agents need to choose among multiple 'desc' or 'title' elements for
processing (e.g., to decide which string to use for a tooltip), the user agent shall choose the first one.

5.5 The 'symbol' element

The 'symbol' element is used to define graphical template objects which can be instantiated by a 'use' element.

The use of 'symbol' elements for graphics that are used multiple times in the same document adds structure and
semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille, and thus promote
accessibility.

The key distinctions between a 'symbol' and a 'g' are:

● A 'symbol' element itself is not rendered. Only instances of a 'symbol' element (i.e., a reference to a 'symbol' by a
'use' element) are rendered.

● A 'symbol' element has attributes viewBox and preserveAspectRatio which allow a 'symbol' to scale-to-fit within a
rectangular viewport defined by the referencing 'use' element.

Closely related to the 'symbol' element are the 'marker' and 'pattern' elements.

<!ENTITY % SVG.symbol.extra.content "" >
<!ENTITY % SVG.symbol.element "INCLUDE" >
<![%SVG.symbol.element;[
<!ENTITY % SVG.symbol.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.symbol.extra.content;)*"

>
<!ELEMENT %SVG.symbol.qname; %SVG.symbol.content; >

'symbol' elements are never rendered directly; their only usage is as something that can be referenced using the 'use'
element. The 'display' property does not apply to the 'symbol' element; thus, 'symbol' elements are not directly rendered
even if the 'display' property is set to a value other than none, and 'symbol' elements are available for referencing even

http://www.w3.org/TR/SVG/struct.html (12 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-xml#sec-mixed-content
http://www.w3.org/TR/SVG/access.html

Document Structure - SVG 1.1 - 20030114

when the 'display' property on the 'symbol' element or any of its ancestors is set to none.

5.6 The 'use' element

Any 'svg', 'symbol', 'g', graphics element or other 'use' is potentially a template object that can be re-used (i.e.,
"instanced") in the SVG document via a 'use' element. The 'use' element references another element and indicates that
the graphical contents of that element is included/drawn at that given point in the document.

Unlike 'image', the 'use' element cannot reference entire files.

The 'use' element has optional attributes x, y, width and height which are used to map the graphical contents of the
referenced element onto a rectangular region within the current coordinate system.

The effect of a 'use' element is as if the contents of the referenced element were deeply cloned into a separate non-
exposed DOM tree which had the 'use' element as its parent and all of the 'use' element's ancestors as its higher-level
ancestors. Because the cloned DOM tree is non-exposed, the SVG Document Object Model (DOM) only contains the
'use' element and its attributes. The SVG DOM does not show the referenced element's contents as children of 'use'
element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into a non-
exposed DOM tree also copies any property values resulting from the CSS cascade [CSS2-CASCADE] on the
referenced element and its contents. CSS2 selectors can be applied to the original (i.e., referenced) elements because
they are part of the formal document structure. CSS2 selectors cannot be applied to the (conceptually) cloned DOM tree
because its contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced element had been textually included as a deeply cloned child
of the 'use' element. The referenced element inherits properties from the 'use' element and the 'use' element's ancestors.
An instance of a referenced element does not inherit properties from the referenced element's original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the
SVGElementInstance object within the "instance tree" corresponding to the given referenced element.

The event handling for the non-exposed tree works as if the referenced element had been textually included as a deeply
cloned child of the 'use' element, except that events are dispatched to the SVGElementInstance objects. The event's
target and currentTarget attributes are set to the SVGElementInstance that corresponds to the target and current target
elements in the referenced subtree. An event propagates through the exposed and non-exposed portions of the tree in
the same manner as it would in the regular document tree: first going from the root element to the 'use' element and then
through non-exposed tree elements in the capture phase, followed by the target phase at the target of the event, then
bubbling back through non-exposed tree to the use element and then back through regular tree to the root element in
bubbling phase.

An element and all its corresponding SVGElementInstance objects share an event listener list. The currentTarget
attribute of the event can be used to determine through which object an event listener was invoked.

The behavior of the 'visibility' property conforms to this model of property inheritance. Thus, specifying 'visibility:hidden'
on a 'use' element does not guarantee that the referenced content will not be rendered. If the 'use' element specifies
'visibility:hidden' and the element it references specifies 'visibility:hidden' or 'visibility:inherit', then that one element will
be hidden. However, if the referenced element instead specifies 'visibility:visible', then that element will be visible even if
the 'use' element specifies 'visibility:hidden'.

Animations on a referenced element will cause the instances to also be animated.

A 'use' element has the same visual effect as if the 'use' element were replaced by the following generated content:

● If the 'use' element references a 'symbol' element:

In the generated content, the 'use' will be replaced by 'g', where all attributes from the 'use' element except for x, y,
width, height and xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y)

http://www.w3.org/TR/SVG/struct.html (13 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/cascade.html

Document Structure - SVG 1.1 - 20030114

is appended to the end (i.e., right-side) of the transform attribute on the generated 'g', where x and y represent the
values of the x and y attributes on the 'use' element. The referenced 'symbol' and its contents are deep-cloned into
the generated tree, with the exception that the 'symbol' is replaced by an 'svg'. This generated 'svg' will always
have explicit values for attributes width and height. If attributes width and/or height are provided on the 'use'
element, then these attributes will be transferred to the generated 'svg'. If attributes width and/or height are not
specified, the generated 'svg' element will use values of 100% for these attributes.

● If the 'use' element references an 'svg' element:

In the generated content, the 'use' will be replaced by 'g', where all attributes from the 'use' element except for x, y,
width, height and xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y)
is appended to the end (i.e., right-side) of the transform attribute on the generated 'g', where x and y represent the
values of the x and y attributes on the 'use' element. The referenced 'svg' and its contents are deep-cloned into the
generated tree. If attributes width and/or height are provided on the 'use' element, then these values will override
the corresponding attributes on the 'svg' in the generated tree.

● Otherwise:

In the generated content, the 'use' will be replaced by 'g', where all attributes from the 'use' element except for x, y,
width, height and xlink:href are transferred to the generated 'g' element. An additional transformation translate(x,y)
is appended to the end (i.e., right-side) of the transform attribute on the generated 'g', where x and y represent the
values of the x and y attributes on the 'use' element. The referenced object and its contents are deep-cloned into
the generated tree.

For user agents that support Styling with CSS, the generated 'g' element carries along with it the "cascaded" property
values on the 'use' element which result from the CSS cascade [CSS2-CASCADE]. Additionally, the copy (deep clone) of
the referenced resource carries along with it the "cascaded" property values resulting from the CSS cascade on the
original (i.e., referenced) elements. Thus, the result of various CSS selectors in combination with the class and style
attributes are, in effect, replaced by the functional equivalent of a style attribute in the generated content which conveys
the "cascaded" property values.

Example Use01 below has a simple 'use' on a 'rect'.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example Use01 - Simple case of 'use' on a 'rect'</desc>
 <defs>
 <rect id="MyRect" width="60" height="10"/>
 </defs>
 <rect x=".1" y=".1" width="99.8" height="29.8"
 fill="none" stroke="blue" stroke-width=".2" />
 <use x="20" y="10" xlink:href="#MyRect" />
</svg>

Example Use01

View this example as SVG (SVG-enabled browsers only)

http://www.w3.org/TR/SVG/struct.html (14 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/SVG/images/struct/Use01.svg

Document Structure - SVG 1.1 - 20030114

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example Use01-GeneratedContent - Simple case of 'use' on a 'rect'</desc>
 <!-- 'defs' section left out -->
 <rect x=".1" y=".1" width="99.8" height="29.8"
 fill="none" stroke="blue" stroke-width=".2" />
 <!-- Start of generated content. Replaces 'use' -->
 <g transform="translate(20,10)">
 <rect width="60" height="10"/>
 </g>
 <!-- End of generated content -->
</svg>

View this example as SVG (SVG-enabled browsers only)

Example Use02 below has a 'use' on a 'symbol'.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example Use02 - 'use' on a 'symbol'</desc>
 <defs>
 <symbol id="MySymbol" viewBox="0 0 20 20">
 <desc>MySymbol - four rectangles in a grid</desc>
 <rect x="1" y="1" width="8" height="8"/>
 <rect x="11" y="1" width="8" height="8"/>
 <rect x="1" y="11" width="8" height="8"/>
 <rect x="11" y="11" width="8" height="8"/>
 </symbol>
 </defs>
 <rect x=".1" y=".1" width="99.8" height="29.8"
 fill="none" stroke="blue" stroke-width=".2" />
 <use x="45" y="10" width="10" height="10"
 xlink:href="#MySymbol" />
</svg>

Example Use02

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"

http://www.w3.org/TR/SVG/struct.html (15 of 42)4/2/07 5:32 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/struct/Use01-GeneratedContent.svg
http://www.w3.org/TR/SVG/images/struct/Use02.svg

Document Structure - SVG 1.1 - 20030114

 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example Use02-GeneratedContent - 'use' on a 'symbol'</desc>
 <!-- 'defs' section left out -->
 <rect x=".1" y=".1" width="99.8" height="29.8"
 fill="none" stroke="blue" stroke-width=".2" />
 <!-- Start of generated content. Replaces 'use' -->
 <g transform="translate(45, 10)" >
 <!-- Start of referenced 'symbol'. 'symbol' replaced by 'svg',
 with x,y,width,height=0,0,100%,100% -->
 <svg width="10" height="10"
 viewBox="0 0 20 20">
 <rect x="1" y="1" width="8" height="8"/>
 <rect x="11" y="1" width="8" height="8"/>
 <rect x="1" y="11" width="8" height="8"/>
 <rect x="11" y="11" width="8" height="8"/>
 </svg>
 <!-- End of referenced symbol -->
 </g>
 <!-- End of generated content -->
</svg>

View this example as SVG (SVG-enabled browsers only)

Example Use03 illustrates what happens when a 'use' has a transform attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example Use03 - 'use' with a 'transform' attribute</desc>
 <defs>
 <rect id="MyRect" x="0" y="0" width="60" height="10"/>
 </defs>
 <rect x=".1" y=".1" width="99.8" height="29.8"
 fill="none" stroke="blue" stroke-width=".2" />
 <use xlink:href="#MyRect"
 transform="translate(20,2.5) rotate(10)" />
</svg>

Example Use03

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 100 30"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example Use03-GeneratedContent - 'use' with a 'transform' attribute</desc>
 <!-- 'defs' section left out -->
 <rect x=".1" y=".1" width="99.8" height="29.8"

http://www.w3.org/TR/SVG/struct.html (16 of 42)4/2/07 5:32 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/struct/Use02-GeneratedContent.svg
http://www.w3.org/TR/SVG/images/struct/Use03.svg
http://www.w3.org/2000/svg

Document Structure - SVG 1.1 - 20030114

 fill="none" stroke="blue" stroke-width=".2" />
 <!-- Start of generated content. Replaces 'use' -->
 <g transform="translate(20,2.5) rotate(10)">
 <rect x="0" y="0" width="60" height="10"/>
 </g>
 <!-- End of generated content -->
</svg>

View this example as SVG (SVG-enabled browsers only)

Example Use04 illustrates a 'use' element with various methods of applying CSS styling.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example Use04 - 'use' with CSS styling</desc>
 <defs style=" /* rule 9 */ stroke-miterlimit: 10" >
 <path id="MyPath" d="M300 50 L900 50 L900 250 L300 250"
 class="MyPathClass"
 style=" /* rule 10 */ stroke-dasharray:300,100" />
 </defs>
 <style type="text/css">
 <![CDATA[
 /* rule 1 */ #MyUse { fill: blue }
 /* rule 2 */ #MyPath { stroke: red }
 /* rule 3 */ use { fill-opacity: .5 }
 /* rule 4 */ path { stroke-opacity: .5 }
 /* rule 5 */ .MyUseClass { stroke-linecap: round }
 /* rule 6 */ .MyPathClass { stroke-linejoin: bevel }
 /* rule 7 */ use > path { shape-rendering: optimizeQuality }
 /* rule 8 */ g > path { visibility: hidden }
]]>
 </style>
 <rect x="0" y="0" width="1200" height="300"
 style="fill:none; stroke:blue; stroke-width:3"/>
 <g style=" /* rule 11 */ stroke-width:40">
 <use id="MyUse" xlink:href="#MyPath"
 class="MyUseClass"
 style="/* rule 12 */ stroke-dashoffset:50" />
 </g>
</svg>

Example Use04

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document. Observe that some of the style rules above apply to the
generated content (i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect the
generated content are:

● Rules 7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these

http://www.w3.org/TR/SVG/struct.html (17 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/images/struct/Use03-GeneratedContent.svg
http://www.w3.org/TR/SVG/images/struct/Use04.svg

Document Structure - SVG 1.1 - 20030114

selectors will not yield a match.
● Rule 9: The generated tree only inherits from the ancestors of the 'use' element and does not inherit from the

ancestors of the referenced element; thus, this rule does not affect the generated content.

In the generated content below, the selectors that yield a match have been transferred into inline 'style' attributes for
illustrative purposes.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="3cm" viewBox="0 0 1200 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example Use04-GeneratedContent - 'use' with a 'transform' attribute</desc>
 <!-- 'style' and 'defs' sections left out -->
 <rect x="0" y="0" width="1200" height="300"
 style="fill:none; stroke:blue; stroke-width:3"/>
 <g style="/* rule 11 */ stroke-width:40">
 <!-- Start of generated content. Replaces 'use' -->
 <g style="/* rule 1 */ fill:blue;
 /* rule 3 */ fill-opacity:.5;
 /* rule 5 */ stroke-linecap:round;
 /* rule 12 */ stroke-dashoffset:50" >
 <path d="M300 50 L900 50 L900 250 L300 250"
 style="/* rule 2 */ stroke:red;
 /* rule 4 */ stroke-opacity:.5;
 /* rule 6 */ stroke-linejoin: bevel;
 /* rule 10 */ stroke-dasharray:300,100" />
 </g>
 <!-- End of generated content -->
 </g>
</svg>

View this example as SVG (SVG-enabled browsers only)

When a 'use' references another element which is another 'use' or whose content contains a 'use' element, then the deep
cloning approach described above is recursive. However, a set of references that directly or indirectly reference a
element to create a circular dependency is an error, as described in References and the 'defs' element.

<!ENTITY % SVG.use.extra.content "" >
<!ENTITY % SVG.use.element "INCLUDE" >
<![%SVG.use.element;[
<!ENTITY % SVG.use.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.use.extra.content;)*)"
>
<!ELEMENT %SVG.use.qname; %SVG.use.content; >

<!-- end of SVG.use.element -->]]>
<!ENTITY % SVG.use.attlist "INCLUDE" >
<![%SVG.use.attlist;[
<!ATTLIST %SVG.use.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.XLinkEmbed.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

http://www.w3.org/TR/SVG/struct.html (18 of 42)4/2/07 5:32 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/struct/Use04-GeneratedContent.svg

Document Structure - SVG 1.1 - 20030114

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced element is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced element is placed. A negative value is an error (see
Error processing). A value of zero disables rendering of this element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced element is placed. A negative value is an error (see
Error processing). A value of zero disables rendering of this element.
Animatable: yes.

xlink:href = "<uri>"
A URI reference to an element/fragment within an SVG document.
Animatable: yes.

5.7 The 'image' element

The 'image' element indicates that the contents of a complete file are to be rendered into a given rectangle within the
current user coordinate system. The 'image' element can refer to raster image files such as PNG or JPEG or to files with
MIME type of "image/svg+xml". Conforming SVG viewers need to support at least PNG, JPEG and SVG format files.

The result of processing an 'image' is always a four-channel RGBA result. When an 'image' element references a raster
image file such as PNG or JPEG files which only has three channels (RGB), then the effect is as if the object were
converted into a 4-channel RGBA image with the alpha channel uniformly set to 1. For a single-channel raster image, the
effect is as if the object were converted into a 4-channel RGBA image, where the single channel from the referenced
object is used to compute the three color channels and the alpha channel is uniformly set to 1.

An 'image' element establishes a new viewport for the referenced file as described in Establishing a new viewport. The
bounds for the new viewport are defined by attributes x, y, width and height. The placement and scaling of the referenced
image are controlled by the preserveAspectRatio attribute on the 'image' element.

When an 'image' element references an SVG image the preserveAspectRatio attribute as well as the clip and overflow
properties on the root element in the referenced SVG image are ignored (in the same manner as the x, y, width and
height attributes are ignored). Instead, the preserveAspectRatio attribute on the referencing 'image' element defines how
the SVG image content is fitted into the viewport and the clip and overflow properties on the 'image' element define how
the SVG image content is clipped (or not) relative to the viewport.

The value of the 'viewBox' attribute to use when evaluating the preserveAspectRatio attribute is defined by the referenced
content. For content that clearly identifies a viewBox (e.g. an SVG file with the 'viewBox' attribute on the outermost svg
element) that value should be used. For most raster content (PNG, JPEG) the bounds of the image should be used (i.e.
the 'image' element has an implicit 'viewBox' of "0 0 raster-image-width raster-image-height"). Where no value is readily
available (e.g. an SVG file with no 'viewBox' attribute on the outermost 'svg' element) the preserveAspectRatio attribute is
ignored, and only the translate due to the 'x' & 'y' attributes of the viewport is used to display the content.

http://www.w3.org/TR/SVG/struct.html (19 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers

Document Structure - SVG 1.1 - 20030114

For example, if the image element referenced a PNG or JPEG and preserveAspectRatio="xMinYMin meet", then the
aspect ratio of the raster would be preserved (which means that the scale factor from image's coordinates to current user
space coordinates would be the same for both X and Y), the raster would be sized as large as possible while ensuring
that the entire raster fits within the viewport, and the top/left of the raster would be aligned with the top/left of the viewport
as defined by the attributes 'x', 'y', 'width' and 'height' on the 'image' element. If the value of preserveAspectRatio was
'none' then aspect ratio of the image would not be preserved. The image would be fitted such that the top/left corner of
the raster exactly aligns with coordinate (x, y) and the bottom/right corner of the raster exactly aligns with coordinate (x
+width,y+height).

The resource referenced by the 'image' element represents a separate document which generates its own parse tree and
document object model (if the resource is XML). Thus, there is no inheritance of properties into the image.

Unlike 'use', the 'image' element cannot reference elements within an SVG file.

<!ENTITY % SVG.Image.extra.class "" >
<!ENTITY % SVG.Image.class

 "| %SVG.image.qname; %SVG.Image.extra.class;"

>
<!-- image: Image Element -->
<!ENTITY % SVG.image.extra.content "" >
<!ENTITY % SVG.image.element "INCLUDE" >
<![%SVG.image.element;[
<!ENTITY % SVG.image.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.image.extra.content;)*)"
>
<!ELEMENT %SVG.image.qname; %SVG.image.content; >

<!-- end of SVG.image.element -->]]>
<!ENTITY % SVG.image.attlist "INCLUDE" >
<![%SVG.image.attlist;[
<!ATTLIST %SVG.image.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Viewport.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.ColorProfile.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.XLinkEmbed.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

 width %Length.datatype; #REQUIRED

 height %Length.datatype; #REQUIRED

 preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.

http://www.w3.org/TR/SVG/struct.html (20 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

Animatable: yes.
y = "<coordinate>"

The y-axis coordinate of one corner of the rectangular region into which the referenced document is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

height = "<length>"
The height of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

xlink:href = "<uri>"
A URI reference.
Animatable: yes.

An example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>This graphic links to an external image
 </desc>
 <image x="200" y="200" width="100px" height="100px"
 xlink:href="myimage.png">
 <title>My image</title>
 </image>
</svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG contains a 'switch' element along with attributes requiredFeatures, requiredExtensions and systemLanguage to
provide an ability to specify alternate viewing depending on the capabilities of a given user agent or the user's language.

<!ENTITY % SVG.Conditional.extra.attrib "" >
<!ENTITY % SVG.Conditional.attrib

 "requiredFeatures %FeatureList.datatype; #IMPLIED
 requiredExtensions %ExtensionList.datatype; #IMPLIED
 systemLanguage %LanguageCodes.datatype; #IMPLIED
 %SVG.Conditional.extra.attrib;"
>

Attributes requiredFeatures, requiredExtensions and systemLanguage act as tests and return either true or false results.
The 'switch' renders the first of its children for which all of these attributes test true. If the given attribute is not specified,
then a true value is assumed.

Similar to the 'display' property, conditional processing attributes only affect the direct rendering of elements and do not
prevent elements from being successfully referenced by other elements (such as via a 'use').

In consequence:

http://www.w3.org/TR/SVG/struct.html (21 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Document Structure - SVG 1.1 - 20030114

● requiredFeatures, requiredExtensions and systemLanguage attributes affect 'a', 'altGlyph', 'foreignObject', 'textPath',
'tref', and 'tspan' elements.

● requiredFeatures, requiredExtensions and systemLanguage attributes will have no effect on 'mask', 'clipPath', and
'pattern' elements.

● requiredFeatures, requiredExtensions and systemLanguage attributes do not apply to the 'defs', and 'cursor'
elements because they are not part of the rendering tree.

● requiredFeatures, requiredExtensions and systemLanguage attributes affect 'animate', 'animateColor',
'animateMotion', 'animateTransform', and 'set' elements. If the conditional statement on these animation elements
fails, the animation will never be triggered.

5.8.2 The 'switch' element

The 'switch' element evaluates the requiredFeatures, requiredExtensions and systemLanguage attributes on its direct
child elements in order, and then processes and renders the first child for which these attributes evaluate to true. All
others will be bypassed and therefore not rendered. If the child element is a container element such as a 'g', then the
entire subtree is either processed/rendered or bypassed/not rendered.

Note that the values of properties 'display' and 'visibility' have no effect on 'switch' element processing. In particular,
setting 'display' to none on a child of a 'switch' element has no effect on true/false testing associated with 'switch'
element processing.

<!ENTITY % SVG.switch.extra.content "" >
<!ENTITY % SVG.switch.element "INCLUDE" >
<![%SVG.switch.element;[
<!ENTITY % SVG.switch.content
 "((%SVG.Description.class;)*, (%SVG.svg.qname; | %SVG.g.qname;

 | %SVG.use.qname; | %SVG.text.qname; | %SVG.Animation.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Shape.class;

 %SVG.Hyperlink.class; %SVG.Extensibility.class;

 %SVG.switch.extra.content;)*)"
>
<!ELEMENT %SVG.switch.qname; %SVG.switch.content; >

<!-- end of SVG.switch.element -->]]>
<!ENTITY % SVG.switch.attlist "INCLUDE" >
<![%SVG.switch.attlist;[
<!ATTLIST %SVG.switch.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.External.attrib;

 transform %TransformList.datatype; #IMPLIED

>

For more information and an example, see Embedding foreign object types.

5.8.3 The requiredFeatures attribute

Definition of requiredFeatures:

requiredFeatures = list-of-features
The value is a list of feature strings, with the individual values separated by white space. Determines whether all of
the named features are supported by the user agent. Only feature strings defined in the Feature String appendix
are allowed. If all of the given features are supported, then the attribute evaluates to true; otherwise, the current

http://www.w3.org/TR/SVG/struct.html (22 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/extend.html#id5199960
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Document Structure - SVG 1.1 - 20030114

element and its children are skipped and thus will not be rendered.
Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is given to attribute
requiredFeatures, the attribute returns "false".

requiredFeatures is often used in conjunction with the 'switch' element. If the requiredFeatures is used in other situations,
then it represents a simple switch on the given element whether to render the element or not.

5.8.4 The requiredExtensions attribute

The requiredExtensions attribute defines a list of required language extensions. Language extensions are capabilities
within a user agent that go beyond the feature set defined in this specification. Each extension is identified by a URI
reference.

Definition of requiredExtensions:

requiredExtensions = list-of-extensions
The value is a list of URI references which identify the required extensions, with the individual values separated by
white space. Determines whether all of the named extensions are supported by the user agent. If all of the given
extensions are supported, then the attribute evaluates to true; otherwise, the current element and its children are
skipped and thus will not be rendered.
Animatable: no.

If a given URI reference contains white space within itself, that white space must be escaped.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is given to attribute
requiredExtensions, the attribute returns "false".

requiredExtensions is often used in conjunction with the 'switch' element. If the requiredExtensions is used in other
situations, then it represents a simple switch on the given element whether to render the element or not.

The URI names for the extension should include versioning information, such as "http://example.org/
SVGExtensionXYZ/1.0", so that script writers can distinguish between different versions of a given extension.

5.8.5 The systemLanguage attribute

The attribute value is a comma-separated list of language names as defined in [RFC3066].

Evaluates to "true" if one of the languages indicated by user preferences exactly equals one of the languages given in
the value of this parameter, or if one of the languages indicated by user preferences exactly equals a prefix of one of the
languages given in the value of this parameter such that the first tag character following the prefix is "-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in such a way that
it is always true that if a user understands a language with a certain tag, then this user will also understand all languages
with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference available to the user, implementers should take
into account the fact that users are not familiar with the details of language matching as described above, and should
provide appropriate guidance. As an example, users may assume that on selecting "en-gb", they will be served any kind
of English document if British English is not available. The user interface for setting user preferences should guide the
user to add "en" to get the best matching behavior.

http://www.w3.org/TR/SVG/struct.html (23 of 42)4/2/07 5:32 PM

http://www.ietf.org/rfc/rfc3066.txt

Document Structure - SVG 1.1 - 20030114

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, content that is
presented simultaneously in the original Maori and English versions, would call for:

<text systemLanguage="mi, en"><!-- content goes here --></text>

However, just because multiple languages are present within the object on which the systemLanguage test attribute is
placed, this does not mean that it is intended for multiple linguistic audiences. An example would be a beginner's
language primer, such as "A First Lesson in Latin," which is clearly intended to be used by an English-literate audience.
In this case, the systemLanguage test attribute should only include "en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a 'switch', and none of
them matches, this may lead to situations where no content is displayed. It is thus recommended to include a "catch-all"
choice at the end of such a 'switch' which is acceptable in all cases.

For the systemLanguage attribute: Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is given to attribute
systemLanguage, the attribute returns "false".

systemLanguage is often used in conjunction with the 'switch' element. If the systemLanguage is used in other situations,
then it represents a simple switch on the given element whether to render the element or not.

5.8.6 Applicability of Test Attributes

The following list describes the applicability of the test attributes to the elements that do not directly produce rendering.

● the test attributes do not effect the 'mask', 'clipPath', 'gradient' and 'pattern' elements. The test attributes on a
referenced element do not affect the rendering of the referencing element.

● the test attributes do not effect the 'defs', and 'cursor' elements as they are not part of the rendering tree.
● an animation element ('animate', 'animateMotion', 'animateTransform', 'animateColor' and 'set') will never be

triggered if it has a test attribute that evaluates to false.

5.9 Specifying whether external resources are required for proper rendering

Documents often reference and use the contents of other files (and other Web resources) as part of their rendering. In
some cases, authors want to specify that particular resources are required for a document to be considered correct.

Attribute externalResourcesRequired is available on all container elements and to all elements which potentially can
reference external resources. It specifies whether referenced resources that are not part of the current document are
required for proper rendering of the given container element or graphics element.

Attribute definition:

externalResourcesRequired = "false | true"
false

(The default value.) Indicates that resources external to the current document are optional. Document
rendering can proceed even if external resources are unavailable to the current element and its
descendants.

true
Indicates that resources external to the current document are required. If an external resource is not
available, progressive rendering is suspended, the document's SVGLoad event is not fired and the
animation timeline does not begin until that resource and all other required resources become available,
have been parsed and are ready to be rendered. If a timeout event occurs on a required resource, then the
document goes into an error state (see Error processing). The document remains in an error state until all
required resources become available.

This attribute applies to all types of resource references, including style sheets, color profiles (see Color profile

http://www.w3.org/TR/SVG/struct.html (24 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Document Structure - SVG 1.1 - 20030114

descriptions) and fonts specified by a URI reference using a 'font-face' element or a CSS @font-face specification. In
particular, if an element sets externalResourcesRequired="true", then all style sheets must be available since any style
sheet might affect the rendering of that element.

Attribute externalResourcesRequired is not inheritable (from a sense of attribute value inheritance), but if set on a
container element, its value will apply to all elements within the container.

Because setting externalResourcesRequired="true" on a container element can have the effect of disabling progressive
display of the contents of that container, tools that generate SVG content are cautioned against using simply setting
externalResourcesRequired="true" on the outermost 'svg' element on a universal basis. Instead, it is better to specify
externalResourcesRequired="true" on those particular graphics elements or container elements which specify need the
availability of external resources in order to render properly.

For externalResourcesRequired: Animatable: no.

5.10 Common attributes

5.10.1 Attributes common to all elements: id and xml:base

The id and xml:base attributes are available on all SVG elements:

Attribute definitions:

id = "name"
Standard XML attribute for assigning a unique name to an element. Refer to the "Extensible Markup Language
(XML) 1.0" Recommendation [XML10].
Animatable: no.

xml:base = "<uri>"
Specifies a base URI other than the base URI of the document or external entity. Refer to the "XML Base"
specification [XML-BASE].
Animatable: no.

5.10.2 The xml:lang and xml:space attributes

Elements that might contain character data content have attributes xml:lang and xml:space:

<!ENTITY % SVG.id.attrib

 "id ID #IMPLIED"
>
<!ENTITY % SVG.base.attrib

 "xml:base %URI.datatype; #IMPLIED"

>
<!ENTITY % SVG.lang.attrib

 "xml:lang %LanguageCode.datatype; #IMPLIED"
>
<!ENTITY % SVG.space.attrib

 "xml:space (default | preserve) #IMPLIED"
>
<!ENTITY % SVG.Core.extra.attrib "" >
<!ENTITY % SVG.Core.attrib

 "%SVG.id.attrib;

 %SVG.base.attrib;

 %SVG.lang.attrib;

 %SVG.space.attrib;

 %SVG.Core.extra.attrib;"
>

http://www.w3.org/TR/SVG/struct.html (25 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlbase/

Document Structure - SVG 1.1 - 20030114

Attribute definitions:

xml:lang = "languageID"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of
particular elements. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML10].
Animatable: no.

xml:space = "{default | preserve}"
Standard XML attribute to specify whether white space is preserved in character data. The only possible values
are default and preserve. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML10] and to
the discussion white space handling in SVG.
Animatable: no.

5.11 Core Attribute Module

The Core Attribute Module defines the attribute set Core.attrib that is the core set of attributes that can be present on any
element.

Collection Name Attributes in Collection

Core.attrib id, xml:base, xml:lang, xml:space

5.12 Structure Module

Elements Attributes Content Model

svg

Core.attrib, Conditional.attrib, Style.attrib, x, y, width, height, viewBox,
preserveAspectRatio, zoomAndPan, version, baseProfile,
contentScriptType, contentStyleType, External.attrib, Presentation.attrib,
GraphicalEvents.attrib, DocumentEvents.attrib

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

g
Core.attrib, Conditional.attrib, Style.attrib, External.attrib, Presentation.
attrib, GraphicalEvents.attrib, transform

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

defs
Core.attrib, Conditional.attrib, Style.attrib, External.attrib, Presentation.
attrib, GraphicalEvents.attrib, transform

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

desc Core.attrib, Style.attrib (PCDATA)*

http://www.w3.org/TR/SVG/struct.html (26 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Document Structure - SVG 1.1 - 20030114

title Core.attrib, Style.attrib (PCDATA)*

metadata Core.attrib (PCDATA)*

symbol
Core.attrib, Style.attrib, External.attrib, viewBox, preserveAspectRatio,
Presentation.attrib, GraphicsElementEventAttrs

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

use
Core.attrib, Style.attrib, Conditional.attrib, transform, x, y, width, height,
XLinkEmbed.attrib, Presentation.attrib, GraphicsElementEventAttrs

(Description.class | Animation.
class)*

5.12.1 Structure Content Sets

The Structure Module defines the Description.class, Structure.class and Use.class content sets.

Content Set Name Elements in Content Set

Description.class desc, title, metadata

Use.class use

Structure.class svg, g, defs, symbol, Use.class

5.13 Basic Structure Module

Elements Attributes Content Model

svg
Core.attrib, Conditional.attrib, Style.attrib, x, y, width, height, viewBox,
preserveAspectRatio, zoomAndPan, version, baseProfile, External.
attrib, Presentation.attrib, GraphicalEvents.attrib, DocumentEvents.attrib

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

g
Core.attrib, Conditional.attrib, Style.attrib, External.attrib, Presentation.
attrib, GraphicalEvents.attrib, transform

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

http://www.w3.org/TR/SVG/struct.html (27 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

defs
Core.attrib, Conditional.attrib, Style.attrib, External.attrib, Presentation.
attrib, GraphicalEvents.attrib, transform

(Description.class | Structure.
class | Shape.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Text.class |
Script.class | Style.class | Marker.
class | Clip.class | Mask.class |
Gradient.class | Pattern.class |
Filter.class | Cursor.class | Font.
class | Animation.class |
ColorProfile.class)*

desc Core.attrib, Style.attrib (PCDATA)*

title Core.attrib, Style.attrib (PCDATA)*

metadata Core.attrib (PCDATA)*

use
Core.attrib, Style.attrib, Conditional.attrib, transform, x, y, width, height,
XLinkEmbed.attrib, Presentation.attrib, GraphicsElementEventAttrs

(Description.class | Animation.
class)*

5.13.1 Basic Structure Content Sets

The Basic Structure Module defines the Description.class, Structure.class and Use.class content sets.

Content Set Name Elements in Content Set

Description.class desc, title, metadata

Use.class use

Structure.class svg, g, defs, Use.class

5.14 Container Attribute Module

The Container Attribute Module defines the Container.attrib attribute set.

Collection Name Attributes in Collection

Container.attrib enable-background

5.15 Conditional Processing Module

Elements Attributes Content Model

switch
Core.attrib, Conditional.attrib, External.attrib, Style.attrib,
transform, Presentation.attrib, GraphicalEvents.attrib

(Description.class | Shape.class | Text.class |
Structure.class | Image.class | Hyperlink.
class | Extensibility.class | Animation.class)*

5.15.1 Conditional Processing Content Set

The Conditional Processing Module defines the Conditional.class content set.

Content Set Name Elements in Content Set

Conditional.class switch

5.15.2 Conditional Processing Attribute Set

The Conditional Processing Module defines the Conditional.attrib attribute set.

http://www.w3.org/TR/SVG/struct.html (28 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

Collection Name Attributes in Collection

Conditional.attrib requiredFeatures, requiredExtensions, systemLanguage

5.16 Image Module

Elements Attributes Content Model

image

Core.attrib, XLinkEmbed.attrib, Conditional.attrib, Style.attrib,
External.attrib, GraphicalEvents.attrib, preserveAspectRatio, Paint.
attrib, Opacity.attrib, Graphics.attrib, Cursor.attrib, Filter.attrib, Mask.
attrib, GraphicalEvents.attrib, Clip.attrib, Profile.attrib, Viewport.attrib,
transform, x, y, width, height

(Description.class | Animation.class)*

5.16.1 Image Content Set

The Image Module defines the Image.class content set.

Content Set Name Elements in Content Set

Image.class image

5.17 DOM interfaces

The following interfaces are defined below: SVGDocument, SVGSVGElement, SVGGElement, SVGDefsElement,
SVGDescElement, SVGTitleElement, SVGSymbolElement, SVGUseElement, SVGElementInstance,
SVGElementInstanceList, SVGImageElement, SVGSwitchElement, GetSVGDocument.

Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such as when an
'svg' element is embedded inline within an XHTML document [XHTML], then an SVGDocument object will not exist;
instead, the root object in the document object hierarchy will be a Document object of a different type, such as an
HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy is an 'svg'
element, such as when viewing a stand-alone SVG file (i.e., a file with MIME type "image/svg+xml"). In this case, the
SVGDocument object will be the root object of the document object model hierarchy.

In the case where an SVG document is embedded by reference, such as when an XHTML document has an 'object'
element whose href attribute references an SVG document (i.e., a document whose MIME type is "image/svg+xml" and
whose root element is thus an 'svg' element), there will exist two distinct DOM hierarchies. The first DOM hierarchy will
be for the referencing document (e.g., an XHTML document). The second DOM hierarchy will be for the referenced SVG
document. In this second DOM hierarchy, the root object of the document object model hierarchy is an SVGDocument
object.

The SVGDocument interface contains a similar list of attributes and methods to the HTMLDocument interface described
in the Document Object Model (HTML) Level 1 chapter of the [DOM1] specification.

IDL Definition

interface SVGDocument :
 Document,
 events::DocumentEvent {

http://www.w3.org/TR/SVG/struct.html (29 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/refs.html#ref-XHTML
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/SVG/refs.html#ref-DOM1

Document Structure - SVG 1.1 - 20030114

 readonly attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 readonly attribute SVGSVGElement rootElement;
};

Attributes

readonly DOMString title
The title of a document as specified by the title sub-element of the 'svg' root element (i.e., <svg><title>Here
is the title</title>...</svg>)

readonly DOMString referrer
Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to
the page directly (not through a link, but, for example, via a bookmark).

readonly DOMString domain
The domain name of the server that served the document, or a null string if the server cannot be identified
by a domain name.

readonly DOMString URL
The complete URI of the document.

readonly SVGSVGElement rootElement
The root 'svg' element in the document hierarchy.

Interface SVGSVGElement

A key interface definition is the SVGSVGElement interface, which is the interface that corresponds to the 'svg' element.
This interface contains various miscellaneous commonly-used utility methods, such as matrix operations and the ability
to control the time of redraw on visual rendering devices.

SVGSVGElement extends ViewCSS and DocumentCSS to provide access to the computed values of properties and
the override style sheet as described in DOM2.

IDL Definition

interface SVGSVGElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGLocatable,
 SVGFitToViewBox,
 SVGZoomAndPan,
 events::EventTarget,
 events::DocumentEvent,
 css::ViewCSS,
 css::DocumentCSS {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 attribute DOMString contentScriptType;
 // raises DOMException on setting
 attribute DOMString contentStyleType;
 // raises DOMException on setting
 readonly attribute SVGRect viewport;
 readonly attribute float pixelUnitToMillimeterX;
 readonly attribute float pixelUnitToMillimeterY;
 readonly attribute float screenPixelToMillimeterX;

http://www.w3.org/TR/SVG/struct.html (30 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

 readonly attribute float screenPixelToMillimeterY;
 attribute boolean useCurrentView;
 // raises DOMException on setting
 readonly attribute SVGViewSpec currentView;
 attribute float currentScale;
 // raises DOMException on setting
 readonly attribute SVGPoint currentTranslate;
 unsigned long suspendRedraw (in unsigned long max_wait_milliseconds);
 void unsuspendRedraw (in unsigned long suspend_handle_id)
 raises(DOMException);
 void unsuspendRedrawAll ();
 void forceRedraw ();
 void pauseAnimations ();
 void unpauseAnimations ();
 boolean animationsPaused ();
 float getCurrentTime ();
 void setCurrentTime (in float seconds);
 NodeList getIntersectionList (in SVGRect rect, in SVGElement referenceElement);
 NodeList getEnclosureList (in SVGRect rect, in SVGElement referenceElement);
 boolean checkIntersection (in SVGElement element, in SVGRect rect);
 boolean checkEnclosure (in SVGElement element, in SVGRect rect);
 void deselectAll ();
 SVGNumber createSVGNumber ();
 SVGLength createSVGLength ();
 SVGAngle createSVGAngle ();
 SVGPoint createSVGPoint ();
 SVGMatrix createSVGMatrix ();
 SVGRect createSVGRect ();
 SVGTransform createSVGTransform ();
 SVGTransform createSVGTransformFromMatrix (in SVGMatrix matrix);
 Element getElementById (in DOMString elementId);
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'svg' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'svg' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'svg' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'svg' element.

DOMString contentScriptType
Corresponds to attribute contentScriptType on the given 'svg' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value
of a readonly attribute.

DOMString contentStyleType
Corresponds to attribute contentStyleType on the given 'svg' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value
of a readonly attribute.

readonly SVGRect viewport

The position and size of the viewport (implicit or explicit) that corresponds to this 'svg' element. When the
user agent is actually rendering the content, then the position and size values represent the actual values
when rendering. The position and size values are unitless values in the coordinate system of the parent
element. If no parent element exists (i.e., 'svg' element represents the root of the document tree), if this
SVG document is embedded as part of another document (e.g., via the HTML 'object' element), then the
position and size are unitless values in the coordinate system of the parent document. (If the parent uses
CSS or XSL layout, then unitless values represent pixel units for the current CSS or XSL viewport, as

http://www.w3.org/TR/SVG/struct.html (31 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

described in the CSS2 specification.) If the parent element does not have a coordinate system, then the
user agent should provide reasonable default values for this attribute.

The object itself and its contents are both readonly.

readonly float pixelUnitToMillimeterX
Size of a pixel units (as defined by CSS2) along the x-axis of the viewport, which represents a unit
somewhere in the range of 70dpi to 120dpi, and, on systems that support this, might actually match the
characteristics of the target medium. On systems where it is impossible to know the size of a pixel, a
suitable default pixel size is provided.

readonly float pixelUnitToMillimeterY
Corresponding size of a pixel unit along the y-axis of the viewport.

readonly float screenPixelToMillimeterX
User interface (UI) events in DOM Level 2 indicate the screen positions at which the given UI event
occurred. When the user agent actually knows the physical size of a "screen unit", this attribute will express
that information; otherwise, user agents will provide a suitable default value such as .28mm.

readonly float screenPixelToMillimeterY
Corresponding size of a screen pixel along the y-axis of the viewport.

boolean useCurrentView
The initial view (i.e., before magnification and panning) of the current innermost SVG document fragment
can be either the "standard" view (i.e., based on attributes on the 'svg' element such as fitBoxToViewport) or
to a "custom" view (i.e., a hyperlink into a particular 'view' or other element - see Linking into SVG content:
URI fragments and SVG views). If the initial view is the "standard" view, then this attribute is false. If the
initial view is a "custom" view, then this attribute is true.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value
of a readonly attribute.

readonly SVGViewSpec currentView
The definition of the initial view (i.e., before magnification and panning) of the current innermost SVG
document fragment. The meaning depends on the situation:

■ If the initial view was a "standard" view, then:
■ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match

the values for the corresponding DOM attributes that are on SVGSVGElement directly
■ the values for transform and viewTarget within currentView will be null

■ If the initial view was a link into a 'view' element, then:
■ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will

correspond to the corresponding attributes for the given 'view' element
■ the values for transform and viewTarget within currentView will be null

■ If the initial view was a link into another element (i.e., other than a 'view'), then:
■ the values for viewBox, preserveAspectRatio and zoomAndPan within currentView will match

the values for the corresponding DOM attributes that are on SVGSVGElement directly for the
closest ancestor 'svg' element

■ the values for transform within currentView will be null
■ the viewTarget within currentView will represent the target of the link

■ If the initial view was a link into the SVG document fragment using an SVG view specification
fragment identifier (i.e., #svgView(...)), then:

■ the values for viewBox, preserveAspectRatio, zoomAndPan, transform and viewTarget within
currentView will correspond to the values from the SVG view specification fragment identifier

The object itself and its contents are both readonly.

float currentScale
This attribute indicates the current scale factor relative to the initial view to take into account user
magnification and panning operations, as described under Magnification and panning. DOM attributes
currentScale and currentTranslate are equivalent to the 2x3 matrix [a b c d e f] = [currentScale 0 0
currentScale currentTranslate.x currentTranslate.y]. If "magnification" is enabled (i.e.,
zoomAndPan="magnify"), then the effect is as if an extra transformation were placed at the outermost level
on the SVG document fragment (i.e., outside the outermost 'svg' element).
Exceptions on setting

http://www.w3.org/TR/SVG/struct.html (32 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the value
of a readonly attribute.

readonly SVGPoint currentTranslate
The corresponding translation factor that takes into account user "magnification".

Methods
suspendRedraw

Takes a time-out value which indicates that redraw shall not occur until: (a) the corresponding
unsuspendRedraw(suspend_handle_id) call has been made, (b) an unsuspendRedrawAll() call has been
made, or (c) its timer has timed out. In environments that do not support interactivity (e.g., print media), then
redraw shall not be suspended. suspend_handle_id = suspendRedraw(max_wait_milliseconds) and
unsuspendRedraw(suspend_handle_id) must be packaged as balanced pairs. When you want to suspend
redraw actions as a collection of SVG DOM changes occur, then precede the changes to the SVG DOM
with a method call similar to suspend_handle_id = suspendRedraw(max_wait_milliseconds) and follow the
changes with a method call similar to unsuspendRedraw(suspend_handle_id). Note that multiple
suspendRedraw calls can be used at once and that each such method call is treated independently of the
other suspendRedraw method calls.
Parameters

in unsigned long max_wait_milliseconds The amount of time in milliseconds to hold off before
redrawing the device. Values greater than 60 seconds will
be truncated down to 60 seconds.

Return value
unsigned long A number which acts as a unique identifier for the given suspendRedraw() call. This

value must be passed as the parameter to the corresponding unsuspendRedraw()
method call.

No Exceptions
unsuspendRedraw

Cancels a specified suspendRedraw() by providing a unique suspend_handle_id.
Parameters

in unsigned long suspend_handle_id A number which acts as a unique identifier for the desired
suspendRedraw() call. The number supplied must be a value
returned from a previous call to suspendRedraw()

No Return Value
Exceptions

DOMException This method will raise a DOMException with value NOT_FOUND_ERR if an invalid
value (i.e., no such suspend_handle_id is active) for suspend_handle_id is
provided.

unsuspendRedrawAll
Cancels all currently active suspendRedraw() method calls. This method is most useful at the very end of a
set of SVG DOM calls to ensure that all pending suspendRedraw() method calls have been cancelled.
No Parameters
No Return Value
No Exceptions

forceRedraw
In rendering environments supporting interactivity, forces the user agent to immediately redraw all regions of
the viewport that require updating.
No Parameters
No Return Value
No Exceptions

pauseAnimations
Suspends (i.e., pauses) all currently running animations that are defined within the SVG document fragment
corresponding to this 'svg' element, causing the animation clock corresponding to this document fragment to
stand still until it is unpaused.
No Parameters
No Return Value
No Exceptions

unpauseAnimations
Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG document
fragment, causing the animation clock to continue from the time at which it was suspended.
No Parameters
No Return Value

http://www.w3.org/TR/SVG/struct.html (33 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

No Exceptions
animationsPaused

Returns true if this SVG document fragment is in a paused state.
No Parameters
Return value

boolean Boolean indicating whether this SVG document fragment is in a paused state.
No Exceptions

getCurrentTime
Returns the current time in seconds relative to the start time for the current SVG document fragment.
No Parameters
Return value

float The current time in seconds.
No Exceptions

setCurrentTime
Adjusts the clock for this SVG document fragment, establishing a new current time.
Parameters

in float seconds The new current time in seconds relative to the start time for the current SVG
document fragment.

No Return Value
No Exceptions

getIntersectionList
Returns the list of graphics elements whose rendered content intersects the supplied rectangle, honoring
the 'pointer-events' property value on each candidate graphics element.
Parameters

in SVGRect rect The test rectangle. The values are in the initial coordinate system
for the current 'svg' element.

in SVGElement referenceElement If not null, then only return elements whose drawing order has
them below the given reference element.

Return value
NodeList A list of Elements whose content intersects the supplied rectangle.

No Exceptions
getEnclosureList

Returns the list of graphics elements whose rendered content is entirely contained within the supplied
rectangle, honoring the 'pointer-events' property value on each candidate graphics element.
Parameters

in SVGRect rect The test rectangle. The values are in the initial coordinate system
for the current 'svg' element.

in SVGElement referenceElement If not null, then only return elements whose drawing order has
them below the given reference element.

Return value
NodeList A list of Elements whose content is enclosed by the supplied rectangle.

No Exceptions
checkIntersection

Returns true if the rendered content of the given element intersects the supplied rectangle, honoring the
'pointer-events' property value on each candidate graphics element.
Parameters

in SVGElement element The element on which to perform the given test.

in SVGRect rect The test rectangle. The values are in the initial coordinate system for the
current 'svg' element.

Return value
boolean True or false, depending on whether the given element intersects the supplied rectangle.

No Exceptions
checkEnclosure

Returns true if the rendered content of the given element is entirely contained within the supplied rectangle,
honoring the 'pointer-events' property value on each candidate graphics element.
Parameters

in SVGElement element The element on which to perform the given test.

http://www.w3.org/TR/SVG/struct.html (34 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

in SVGRect rect The test rectangle. The values are in the initial coordinate system for the
current 'svg' element.

Return value
boolean True or false, depending on whether the given element is enclosed by the supplied

rectangle.
No Exceptions

deselectAll
Unselects any selected objects, including any selections of text strings and type-in bars.
No Parameters
No Return Value
No Exceptions

createSVGNumber
Creates an SVGNumber object outside of any document trees. The object is initialized to a value of zero.
No Parameters
Return value

SVGNumber An SVGNumber object.
No Exceptions

createSVGLength
Creates an SVGLength object outside of any document trees. The object is initialized to the value of 0 user
units.
No Parameters
Return value

SVGLength An SVGLength object.
No Exceptions

createSVGAngle
Creates an SVGAngle object outside of any document trees. The object is initialized to the value 0 degrees
(unitless).
No Parameters
Return value

SVGAngle An SVGAngle object.
No Exceptions

createSVGPoint
Creates an SVGPoint object outside of any document trees. The object is initialized to the point (0,0) in the
user coordinate system.
No Parameters
Return value

SVGPoint An SVGPoint object.
No Exceptions

createSVGMatrix
Creates an SVGMatrix object outside of any document trees. The object is initialized to the identity matrix.
No Parameters
Return value

SVGMatrix An SVGMatrix object.
No Exceptions

createSVGRect
Creates an SVGRect object outside of any document trees. The object is initialized such that all values are
set to 0 user units.
No Parameters
Return value

SVGRect An SVGRect object.
No Exceptions

createSVGTransform
Creates an SVGTransform object outside of any document trees. The object is initialized to an identity
matrix transform (SVG_TRANSFORM_MATRIX).
No Parameters
Return value

SVGTransform An SVGTransform object.
No Exceptions

http://www.w3.org/TR/SVG/struct.html (35 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

createSVGTransformFromMatrix
Creates an SVGTransform object outside of any document trees. The object is initialized to the given matrix
transform (i.e., SVG_TRANSFORM_MATRIX).
Parameters

in SVGMatrix matrix The transform matrix.
Return value

SVGTransform An SVGTransform object.
No Exceptions

getElementById
Searches this SVG document fragment (i.e., the search is restricted to a subset of the document tree) for an
Element whose id is given by elementId. If an Element is found, that Element is returned. If no such element
exists, returns null. Behavior is not defined if more than one element has this id.
Parameters

in DOMString elementId The unique id value for an element.

Return value
Element The matching element.

No Exceptions

Interface SVGGElement

The SVGGElement interface corresponds to the 'g' element.

IDL Definition

interface SVGGElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {};

Interface SVGDefsElement

The SVGDefsElement interface corresponds to the 'defs' element.

IDL Definition

interface SVGDefsElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {};

http://www.w3.org/TR/SVG/struct.html (36 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

Interface SVGDescElement

The SVGDescElement interface corresponds to the 'desc' element.

IDL Definition

interface SVGDescElement :
 SVGElement,
 SVGLangSpace,
 SVGStylable {};

Interface SVGTitleElement

The SVGTitleElement interface corresponds to the 'title' element.

IDL Definition

interface SVGTitleElement :
 SVGElement,
 SVGLangSpace,
 SVGStylable {};

Interface SVGSymbolElement

The SVGSymbolElement interface corresponds to the 'symbol' element.

IDL Definition

interface SVGSymbolElement :
 SVGElement,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGFitToViewBox,
 events::EventTarget {};

Interface SVGUseElement

The SVGUseElement interface corresponds to the 'use' element.

http://www.w3.org/TR/SVG/struct.html (37 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

IDL Definition

interface SVGUseElement :
 SVGElement,
 SVGURIReference,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 readonly attribute SVGElementInstance instanceRoot;
 readonly attribute SVGElementInstance animatedInstanceRoot;
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'use' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'use' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'use' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'use' element.

readonly SVGElementInstance instanceRoot
The root of the "instance tree". See description of SVGElementInstance for a discussion on the instance
tree.

readonly SVGElementInstance animatedInstanceRoot
If the 'href' attribute is being animated, contains the current animated root of the "instance tree". If the 'href'
attribute is not currently being animated, contains the same value as 'instanceRoot'. The root of the
"instance tree". See description of SVGElementInstance for a discussion on the instance tree.

Interface SVGElementInstance

For each 'use' element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type
SVGElementInstance. A SVGElementInstance represents a single node in the instance tree. The root object in the
instance tree is pointed to by the instanceRoot attribute on the SVGUseElement object for the corresponding 'use'
element.

If the 'use' element references a simple graphics element such as a 'rect', then there is only a single
SVGElementInstance object, and the correspondingElement attribute on this SVGElementInstance object is the
SVGRectElement that corresponds to the referenced 'rect' element.

If the 'use' element references a 'g' which contains two 'rect' elements, then the instance tree contains three
SVGElementInstance objects, a root SVGElementInstance object whose correspondingElement is the SVGGElement
object for the 'g', and then two child SVGElementInstance objects, each of which has its correspondingElement that is
an SVGRectElement object.

If the referenced object is itself a 'use', or if there are 'use' subelements within the referenced object, the instance tree will
contain recursive expansion of the indirect references to form a complete tree. For example, if a 'use' element references
a 'g', and the 'g' itself contains a 'use', and that 'use' references a 'rect', then the instance tree for the original (outermost)
'use' will consist of a hierarchy of SVGElementInstance objects, as follows:

http://www.w3.org/TR/SVG/struct.html (38 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

SVGElementInstance #1 (parentNode=null, firstChild=#2, correspondingElement is the 'g')
 SVGElementInstance #2 (parentNode=#1, firstChild=#3, correspondingElement is the other 'use')
 SVGElementInstance #3 (parentNode=#2, firstChild=null, corresponding Element is the 'rect')

IDL Definition

interface SVGElementInstance : events::EventTarget {
 readonly attribute SVGElement correspondingElement;
 readonly attribute SVGUseElement correspondingUseElement;
 readonly attribute SVGElementInstance parentNode;
 readonly attribute SVGElementInstanceList childNodes;
 readonly attribute SVGElementInstance firstChild;
 readonly attribute SVGElementInstance lastChild;
 readonly attribute SVGElementInstance previousSibling;
 readonly attribute SVGElementInstance nextSibling;
};

Attributes

readonly SVGElement correspondingElement
The corresponding element to which this object is an instance. For example, if a 'use' element references a
'rect' element, then an SVGElementInstance is created, with its correspondingElement being the
SVGElementInstance object for the 'rect' element.

readonly SVGUseElement correspondingUseElement
The corresponding 'use' element to which this SVGElementInstance object belongs. When 'use' elements
are nested (e.g., a 'use' references another 'use' which references a graphics element such as a 'rect'), then
the correspondingUseElement is the outermost 'use' (i.e., the one which indirectly references the 'rect', not
the one with the direct reference).

readonly SVGElementInstance parentNode
The parent of this SVGElementInstance within the instance tree. All SVGElementInstance objects have a
parent except the SVGElementInstance which corresponds to the element which was directly referenced
by the 'use' element, in which case parentNode is null.

readonly SVGElementInstanceList childNodes
An SVGElementInstanceList that contains all children of this SVGElementInstance within the instance
tree. If there are no children, this is an SVGElementInstanceList containing no entries (i.e., an empty list).

readonly SVGElementInstance firstChild
The first child of this SVGElementInstance within the instance tree. If there is no such
SVGElementInstance, this returns null.

readonly SVGElementInstance lastChild
The last child of this SVGElementInstance within the instance tree. If there is no such
SVGElementInstance, this returns null.

readonly SVGElementInstance previousSibling
The SVGElementInstance immediately preceding this SVGElementInstance. If there is no such
SVGElementInstance, this returns null.

readonly SVGElementInstance nextSibling
The SVGElementInstance immediately following this SVGElementInstance. If there is no such
SVGElementInstance, this returns null.

Interface SVGElementInstanceList

The SVGElementInstanceList interface provides the abstraction of an ordered collection of SVGElementInstance
objects, without defining or constraining how this collection is implemented.

IDL Definition

http://www.w3.org/TR/SVG/struct.html (39 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

interface SVGElementInstanceList {
 readonly attribute unsigned long length;
 SVGElementInstance item (in unsigned long index);
};

Attributes

readonly unsigned long length
The number of SVGElementInstance objects in the list. The range of valid child indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the number of nodes in the list,
this returns null.

Parameters
in unsigned long index Index into the collection.

Return value
SVGElementInstance The SVGElementInstance object at the indexth position in the

SVGElementInstanceList, or null if that is not a valid index.
No Exceptions

Interface SVGImageElement

The SVGImageElement interface corresponds to the 'image' element.

IDL Definition

interface SVGImageElement :
 SVGElement,
 SVGURIReference,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'image' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'image' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'image' element.

readonly SVGAnimatedLength height

http://www.w3.org/TR/SVG/struct.html (40 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

Corresponds to attribute height on the given 'image' element.
readonly SVGAnimatedPreserveAspectRatio preserveAspectRatio

Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGSwitchElement

The SVGSwitchElement interface corresponds to the 'switch' element.

IDL Definition

interface SVGSwitchElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {};

Interface GetSVGDocument

In the case where an SVG document is embedded by reference, such as when an XHTML document has an 'object'
element whose href (or equivalent) attribute references an SVG document (i.e., a document whose MIME type is "image/
svg+xml" and whose root element is thus an 'svg' element), the SVG user agent is required to implement the
GetSVGDocument interface for the element which references the SVG document (e.g., the HTML 'object' or
comparable referencing elements).

IDL Definition

interface GetSVGDocument {
 SVGDocument getSVGDocument ()
 raises(DOMException);
};

Methods

getSVGDocument

Returns the SVGDocument object for the referenced SVG document.

No Parameters
Return value

SVGDocument The SVGDocument object for the referenced SVG document.
Exceptions

DOMException NOT_SUPPORTED_ERR: No SVGDocument object is
available.

http://www.w3.org/TR/SVG/struct.html (41 of 42)4/2/07 5:32 PM

Document Structure - SVG 1.1 - 20030114

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/struct.html (42 of 42)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Styling - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

6 Styling

Contents

● 6.1 SVG's styling properties
● 6.2 Usage scenarios for styling
● 6.3 Alternative ways to specify styling properties
● 6.4 Specifying properties using the presentation attributes
● 6.5 Entity definitions for the presentation attributes
● 6.6 Styling with XSL
● 6.7 Styling with CSS
● 6.8 Case sensitivity of property names and values
● 6.9 Facilities from CSS and XSL used by SVG
● 6.10 Referencing external style sheets
● 6.11 The 'style' element
● 6.12 The class attribute
● 6.13 The style attribute
● 6.14 Specifying the default style sheet language
● 6.15 Property inheritance
● 6.16 The scope/range of styles
● 6.17 User agent style sheet
● 6.18 Aural style sheets
● 6.19 Style Module
● 6.20 DOM interfaces

6.1 SVG's styling properties

SVG uses styling properties to describe many of its document parameters. Styling properties define how the
graphics elements in the SVG content are to be rendered. SVG uses styling properties for the following:

● Parameters which are clearly visual in nature and thus lend themselves to styling. Examples include all
attributes that define how an object is "painted," such as fill and stroke colors, linewidths and dash styles.

● Parameters having to do with text styling such as 'font-family' and 'font-size'.
● Parameters which impact the way that graphical elements are rendered, such as specifying clipping paths,

masks, arrowheads, markers and filter effects.

SVG shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional SVG-specific
rules explicitly mentioned in this specification, the normative definition of properties that are shared with CSS and
XSL is the definition of the property from the CSS2 specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in XSL:

http://www.w3.org/TR/SVG/styling.html (1 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/

Styling - SVG 1.1 - 20030114

● Font properties:
❍ 'font'
❍ 'font-family'
❍ 'font-size'
❍ 'font-size-adjust'
❍ 'font-stretch'
❍ 'font-style'
❍ 'font-variant'
❍ 'font-weight'

● Text properties:
❍ 'direction'
❍ 'letter-spacing'
❍ 'text-decoration'
❍ 'unicode-bidi'
❍ 'word-spacing'

● Other properties for visual media:
❍ 'clip' (Only applicable to outermost 'svg')
❍ 'color' is used to provide a potential indirect value (currentColor) for the 'fill', 'stroke', 'stop-color', 'flood-

color', 'lighting-color' properties. (The SVG properties which support color allow a color specification
which is extended from CSS2 to accommodate color definitions in arbitrary color spaces. See Color
profile descriptions.

❍ 'cursor'
❍ 'display'
❍ 'overflow' (Only applicable to elements which establish a new viewport)
❍ 'visibility'

The following SVG properties are not defined in [CSS2]. The complete normative definitions for these properties are
found in this specification:

● Clipping, Masking and Compositing properties:
❍ 'clip-path'
❍ 'clip-rule'
❍ 'mask'
❍ 'opacity'

● Filter Effects properties:
❍ 'enable-background'
❍ 'filter'
❍ 'flood-color'
❍ 'flood-opacity'
❍ 'lighting-color'

● Gradient properties:
❍ 'stop-color'
❍ 'stop-opacity'

● Interactivity properties:
❍ 'pointer-events'

● Color and Painting properties:
❍ 'color-interpolation'
❍ 'color-interpolation-filters'
❍ 'color-profile'
❍ 'color-rendering'
❍ 'fill'
❍ 'fill-opacity'
❍ 'fill-rule'
❍ 'image-rendering'
❍ 'marker'
❍ 'marker-end'
❍ 'marker-mid'

http://www.w3.org/TR/SVG/styling.html (2 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/

Styling - SVG 1.1 - 20030114

❍ 'marker-start'
❍ 'shape-rendering'
❍ 'stroke'
❍ 'stroke-dasharray'
❍ 'stroke-dashoffset'
❍ 'stroke-linecap'
❍ 'stroke-linejoin'
❍ 'stroke-miterlimit'
❍ 'stroke-opacity'
❍ 'stroke-width'
❍ 'text-rendering'

● Text properties:
❍ 'alignment-baseline'
❍ 'baseline-shift'
❍ 'dominant-baseline'
❍ 'glyph-orientation-horizontal'
❍ 'glyph-orientation-vertical'
❍ 'kerning'
❍ 'text-anchor'
❍ 'writing-mode'

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SVG has many usage scenarios, each with different needs. Here are three common usage scenarios:

1. SVG content used as an exchange format (style sheet language-independent):

In some usage scenarios, reliable interoperability of SVG content across software tools is the main goal. Since
support for a particular style sheet language is not guaranteed across all implementations, it is a requirement
that SVG content can be fully specified without the use of a style sheet language.

2. SVG content generated as the output from XSLT [XSLT]:

XSLT offers the ability to take a stream of arbitrary XML content as input, apply potentially complex
transformations, and then generate SVG content as output. XSLT can be used to transform XML data
extracted from databases into an SVG graphical representation of that data. It is a requirement that fully
specified SVG content can be generated from XSLT.

3. SVG content styled with CSS [CSS2]:

CSS is a widely implemented declarative language for assigning styling properties to XML content, including
SVG. It represents a combination of features, simplicity and compactness that makes it very suitable for many
applications of SVG. It is a requirement that CSS styling can be applied to SVG content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SVG elements in the following two ways:

● Presentation attributes

Styling properties can be assigned using SVG's presentation attributes. For each styling property defined in
this specification, there is a corresponding XML presentation attribute available on all relevant SVG elements.

http://www.w3.org/TR/SVG/styling.html (3 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/

Styling - SVG 1.1 - 20030114

Detailed information on the presentation attributes can be found in Specifying properties using the presentation
attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage scenario 1
above (i.e., tool interoperability). Because it is straightforward to assign values to XML attributes from XSLT,
the presentation attributes are well-suited to usage scenario 2 above (i.e., SVG generation from XSLT). (See
Styling with XSL below.)

Conforming SVG Interpreters and Conforming SVG Viewers are required to support SVG's presentation
attributes.

● CSS

To support usage scenario 3 above, SVG content can be styled with CSS. For more information, see Styling
with CSS.

Conforming SVG Interpreters and Conforming SVG Viewers that support CSS styling of generic (i.e., text-
based) XML content are required to support CSS styling of SVG content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML attribute
(the presentation attribute) with the same name that is available on all relevant SVG elements. For example, SVG
has a 'fill' property that defines how to paint the interior of a shape. There is a corresponding presentation attribute
with the same name (i.e., fill) that can be used to specify a value for the 'fill' property on a given element.

The following example shows how the 'fill' and 'stroke' properties can be assigned to a rectangle using the fill and
stroke presentation attributes. The rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="5cm" viewBox="0 0 1000 500"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <rect x="200" y="100" width="600" height="300"
 fill="red" stroke="blue" stroke-width="3"/>
</svg>

View this example as SVG (SVG-enabled browsers only)

The presentation attributes offer the following advantages:

● Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are required to
support the presentation attributes.

● Simplicity. Styling properties can be attached to elements by simply providing a value for the presentation
attribute on the proper elements.

● Restyling. SVG content that uses the presentation attributes is highly compatible with downstream processing
using XSLT [XSLT] or supplemental styling by adding CSS style rules to override some of the presentation
attributes.

● Convenient generation using XSLT [XSLT]. In some cases, XSLT can be used to generate fully styled SVG
content. The presentation attributes are compatible with convenient generation of SVG from XSLT.

In some situations, SVG content that uses the presentation attributes has potential limitations versus SVG content
that is styled with a style sheet language such as CSS (see Styling with CSS). In other situations, such as when an
XSLT style sheet generates SVG content from semantically rich XML source files, the limitations below may not

http://www.w3.org/TR/SVG/styling.html (4 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/conform.html#ConformingSVGInterpreters
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers
http://www.w3.org/TR/SVG/conform.html#ConformingSVGInterpreters
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers
http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/styling/PresentationAttributes.svg
http://www.w3.org/TR/SVG/conform.html#ConformingSVGInterpreters
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

Styling - SVG 1.1 - 20030114

apply. Depending on the situation, some of the following potential limitations may or may not apply to the
presentation attributes:

● Styling attached to content. The presentation attributes are attached directly to particular elements, thereby
diminishing potential advantages that comes from abstracting styling from content, such as the ability to restyle
documents for different uses and environments.

● Flattened data model. In and of themselves, the presentation attributes do not offer the higher level
abstractions that you get with a styling system, such as the ability to define named collections of properties
which are applied to particular categories of elements. The result is that, in many cases, important higher level
semantic information can be lost, potentially making document reuse and restyling more difficult.

● Potential increase in file size. Many types of graphics use similar styling properties across multiple elements.
For example, a company organization chart might assign one collection of styling properties to the boxes
around temporary workers (e.g., dashed outlines, red fill), and a different collection of styling properties to
permanent workers (e.g., solid outlines, blue fill). Styling systems such as CSS allow collections of properties
to be defined once in a file. With the styling attributes, it might be necessary to specify presentation attributes
on each different element.

● Potential difficulty when embedded into a CSS-styled parent document. When SVG content is embedded
in other XML, and the desire is to style all aspects of the compound document with CSS, use of the
presentation attributes might introduce complexity and difficulty. In this case, it is sometimes easier if the SVG
content does not use the presentation attributes and instead is styled using CSS facilities.

For user agents that support CSS, the presentation attributes must be translated to corresponding CSS style rules
according to rules described in section 6.4.4 of the CSS2 specification, Precedence of non-CSS presentational hints,
with the additional clarification that the presentation attributes are conceptually inserted into a new author style sheet
which is the first in the author style sheet collection. The presentation attributes thus will participate in the CSS2
cascade as if they were replaced by corresponding CSS style rules placed at the start of the author style sheet with a
specificity of zero. In general, this means that the presentation attributes have lower priority than other CSS style
rules specified in author style sheets or style attributes.

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and style
attributes. In this case, the CSS cascade does not apply. (Inheritance of properties, however, does apply. See
Property inheritance.)

An !important declaration within a presentation attribute definition is an error.

Animation of presentation attributes is equivalent to animating the corresponding property. Thus, the same effect
occurs from animating the presentation attribute with attributeType="XML" as occurs with animating the
corresponding property with attributeType="CSS".

6.5 Entity definitions for the presentation attributes

The following entities are defined in the DTD for all of the presentation attributes in SVG:

<!ENTITY % SVG.Core.attrib "" >

<!ENTITY % SVG.Container.attrib "" >

<!ENTITY % SVG.Conditional.attrib "" >

<!ENTITY % SVG.Style.attrib "" >

<!ENTITY % SVG.Viewport.attrib "" >

<!ENTITY % SVG.Text.attrib "" >

<!ENTITY % SVG.TextContent.attrib "" >

<!ENTITY % SVG.Font.attrib "" >

<!ENTITY % SVG.Paint.attrib "" >

<!ENTITY % SVG.Color.attrib "" >

<!ENTITY % SVG.Opacity.attrib "" >

<!ENTITY % SVG.Graphics.attrib "" >

<!ENTITY % SVG.Marker.attrib "" >

http://www.w3.org/TR/SVG/styling.html (5 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#q12
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html#important-rules
http://www.w3.org/TR/SVG/svgdtd.html

Styling - SVG 1.1 - 20030114

<!ENTITY % SVG.Profile.attrib "" >

<!ENTITY % SVG.Gradient.attrib "" >

<!ENTITY % SVG.Clip.attrib "" >

<!ENTITY % SVG.Mask.attrib "" >

<!ENTITY % SVG.Filter.attrib "" >

<!ENTITY % SVG.FilterColor.attrib "" >

<!ENTITY % SVG.DocumentEvents.attrib "" >

<!ENTITY % SVG.GraphicalEvents.attrib "" >

<!ENTITY % SVG.Cursor.attrib "" >

<!ENTITY % SVG.XLinkEmbed.attrib "" >

<!ENTITY % SVG.External.attrib "" >

6.6 Styling with XSL

XSL style sheets (see [XSLT]) define how to transform XML content into something else, usually other XML. When
XSLT is used in conjunction with SVG, sometimes SVG content will serve as both input and output for XSL style
sheets. Other times, XSL style sheets will take non-SVG content as input and generate SVG content as output.

The following example uses an external XSL style sheet to transform SVG content into modified SVG content (see
Referencing external style sheets). The style sheet sets the 'fill' and 'stroke' properties on all rectangles to red and
blue, respectively:

mystyle.xsl
<?xml version="1.0" standalone="no"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:svg="http://www.w3.org/2000/svg">
 <xsl:output
 method="xml"
 encoding="utf-8"
 doctype-public="-//W3C//DTD SVG 1.1//EN"
 doctype-system="http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"/>
 <!-- Add version to topmost 'svg' element -->
 <xsl:template match="/svg:svg">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:attribute name="version">1.1</xsl:attribute>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>
 <!-- Add styling to all 'rect' elements -->
 <xsl:template match="svg:rect">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:attribute name="fill">red</xsl:attribute>
 <xsl:attribute name="stroke">blue</xsl:attribute>
 <xsl:attribute name="stroke-width">3</xsl:attribute>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>
SVG file to be transformed by mystyle.xsl
<?xml version="1.0" standalone="no"?>
<svg width="10cm" height="5cm"
 xmlns="http://www.w3.org/2000/svg">
 <rect x="2cm" y="1cm" width="6cm" height="3cm"/>
</svg>
SVG content after applying mystyle.xsl
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="5cm" version="1.1"
 xmlns="http://www.w3.org/2000/svg">

http://www.w3.org/TR/SVG/styling.html (6 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/xslt

Styling - SVG 1.1 - 20030114

 <rect x="2cm" y="1cm" width="6cm" height="3cm" fill="red" stroke="blue" stroke-width="3"/>
</svg>

6.7 Styling with CSS

SVG implementations that support CSS are required to support the following:

● External CSS style sheets referenced from the current document (see Referencing external style sheets)
● Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within an SVG

'style' element)
● Inline style (i.e., CSS property declarations within a style attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the 'fill' and 'stroke' properties on all
rectangles to red and blue, respectively:

mystyle.css
rect {
 fill: red;
 stroke: blue;
 stroke-width: 3
}
SVG file referencing mystyle.css
<?xml version="1.0" standalone="no"?>
<?xml-stylesheet href="mystyle.css" type="text/css"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="5cm" viewBox="0 0 1000 500"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <rect x="200" y="100" width="600" height="300"/>
</svg>

View this example as SVG (SVG-enabled browsers only)

CSS style sheets can be embedded within SVG content inside of a 'style' element. The following example uses an
internal CSS style sheet to achieve the same result as the previous example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="5cm" viewBox="0 0 1000 500"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <defs>
 <style type="text/css"><![CDATA[
 rect {
 fill: red;
 stroke: blue;
 stroke-width: 3
 }
]]></style>
 </defs>
 <rect x="200" y="100" width="600" height="300"/>
</svg>

View this example as SVG (SVG-enabled browsers only)

Note how the CSS style sheet is placed within a CDATA construct (i.e., <![CDATA[...]]>). Placing internal CSS
style sheets within CDATA blocks is sometimes necessary since CSS style sheets can include characters, such as

http://www.w3.org/TR/SVG/styling.html (7 of 14)4/2/07 5:32 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/styling/ExternalCSSStyleSheet.svg
http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/styling/InternalCSSStyleSheet.svg
http://www.w3.org/TR/REC-xml#sec-cdata-sect

Styling - SVG 1.1 - 20030114

">", which conflict with XML parsers. Even if a given style sheet does not use characters that conflict with XML
parsing, it is highly recommended that internal style sheets be placed inside CDATA blocks.

Implementations that support CSS are also required to support CSS inline style. Similar to the style attribute in
HTML, CSS inline style can be declared within a style attribute in SVG by specifying a semicolon-separated list of
property declarations, where each property declaration has the form "name: value".

The following example shows how the 'fill' and 'stroke' properties can be assigned to a rectangle using the style
attribute. Just like the previous example, the rectangle will be filled with red and outlined with blue:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="5cm" viewBox="0 0 1000 500"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <rect x="200" y="100" width="600" height="300"
 style="fill:red; stroke:blue; stroke-width:3"/>
</svg>

View this example as SVG (SVG-enabled browsers only)

In an SVG user agent that supports CSS style sheets, the following facilities from [CSS2] must be supported:

● CSS2 selectors within style sheets (reference: [Selectors]). Because SVG is intended to be used as one
component in a multiple namespace XML application and CSS2 is not namespace aware, type selectors will
only match against the local part of the element's qualified name.

● External CSS style sheets [XML-SS], CSS style sheets within 'style' elements and CSS declaration blocks
within style attributes attached to specific SVG elements.

● CSS2 rules for assigning property values, cascading and inheritance.
● @font-face, @media, @import and @charset rules within style sheets.
● CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child, :visited, :link and :

lang. The remaining CSS2 pseudo-classes, including those having to do with generated content, are not part
of the SVG language definition. (Note: an SVG element gains focus when it is selected. See Text selection.)

● For the purposes of aural media, SVG represents a CSS-stylable XML grammar. In user agents that support
aural style sheets, CSS aural style properties can be applied as defined in [CSS2]. (See Aural style sheets.)

● CSS style sheets defined within a 'style' element can be immediate character data content of the 'style'
element or can be embedded within a CDATA block.

SVG defines an @color-profile at-rule [CSS2-ATRULES] for defining color profiles so that ICC color profiles can be
applied to CSS-styled SVG content.

Note the following about relative URIs and external CSS style sheets: The CSS2 specification [CSS-URI] says that
relative URIs (as defined in [RFC2396]) within style sheets are resolved such that the base URI is that of the style
sheet, not that of the referencing document.

6.8 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML [XML10], which is case-sensitive. CSS
property declarations specified either in CSS style sheets or in a style attribute, on the other hand, are generally case-
insensitive with some exceptions (see section 4.1.3 Characters and case in the CSS2 specification).

Because presentation attributes are expressed as XML attributes, presentation attributes are case-sensitive and
must match the exact name as listed under "Entity definitions for the presentation attributes", above. When using a
presentation attribute to specify a value for the 'fill' property, the presentation attribute must be specified as 'fill' and

http://www.w3.org/TR/SVG/styling.html (8 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/html401/present/styles.html#h-14.2.2
http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/styling/StyleAttribute.svg
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import
http://www.w3.org/TR/REC-CSS2/syndata.html#x66
http://www.w3.org/TR/REC-CSS2/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-xml#sec-cdata-sect
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules
http://www.w3.org/TR/REC-CSS2/syndata.html#uri
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2/syndata.html#q4

Styling - SVG 1.1 - 20030114

not 'FILL' or 'Fill'. Keyword values, such as "italic" in font-style="italic", are also case-sensitive and must be
specified using the exact case used in the specification which defines the given keyword. For example, the keyword
"sRGB" must have lowercase "s" and uppercase "RGB".

Property declarations within CSS style sheets or in a style attribute must only conform to CSS rules, which are
generally more lenient with regard to case sensitivity. However, to promote consistency across the different ways for
expressing styling properties, it is strongly recommended that authors use the exact property names (usually,
lowercase letters and hyphens) as defined in the relevant specification and express all keywords using the same
case as is required by presentation attributes and not take advantage of CSS's ability to ignore case.

6.9 Facilities from CSS and XSL used by SVG

SVG shares various relevant properties and approaches common to CSS and XSL, plus the semantics of many of
the processing rules.

SVG shares the following facilities with CSS and XSL:

● Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (See list of shared
properties).

● Syntax rules. (The normative references are [CSS2 syntax and basic data types] and [The grammar of CSS2].)
● Allowable data types. (The normative reference is [CSS2 syntax and basic data types]), with the exception that

SVG allows <length> and <angle> values without a unit identifier. See Units.)
● Inheritance rules.
● The color keywords from CSS2 that correspond to the colors used by objects in the user's environment. (The

normative reference is [CSS2 system colors].)
● For implementations that support CSS styling of SVG content, then that styling must be compatible with

various other rules in CSS. (See Styling with CSS.)

6.10 Referencing external style sheets

External style sheets are referenced using the mechanism documented in "Associating Style Sheets with XML
documents Version 1.0" [XML-SS].

6.11 The 'style' element

The 'style' element allows style sheets to be embedded directly within SVG content. SVG's 'style' element has the
same attributes as the corresponding element in HTML (see HTML's 'style' element).

<!ENTITY % SVG.style.extra.content "" >
<!ENTITY % SVG.style.element "INCLUDE" >
<![%SVG.style.element;[
<!ENTITY % SVG.style.content
 "(#PCDATA %SVG.style.extra.content;)*"
>
<!ELEMENT %SVG.style.qname; %SVG.style.content; >

<!-- end of SVG.style.element -->]]>
<!ENTITY % SVG.style.attlist "INCLUDE" >
<![%SVG.style.attlist;[
<!ATTLIST %SVG.style.qname;

 xml:space (preserve) #FIXED 'preserve'
 %SVG.Core.attrib;

 type %ContentType.datatype; #REQUIRED
 media %MediaDesc.datatype; #IMPLIED
 title %Text.datatype; #IMPLIED
>

http://www.w3.org/TR/SVG/styling.html (9 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/html401/present/styles.html#h-14.2.3

Styling - SVG 1.1 - 20030114

Attribute definitions:

type = content-type
This attribute specifies the style sheet language of the element's contents. The style sheet language is
specified as a content type (e.g., "text/css"), as per [RFC2045]. Authors must supply a value for this attribute;
there is no default value.
Animatable: no.

media = media-descriptors
This attribute specifies the intended destination medium for style information. It may be a single media
descriptor or a comma-separated list. The default value for this attribute is "all". The set of recognized media-
descriptors are the list of media types recognized by CSS2 [CSS2 Recognized media types].
Animatable: no.

title = advisory-title
(For compatibility with [HTML4]) This attribute specifies an advisory title for the 'style' element.
Animatable: no.

The syntax of style data depends on the style sheet language.

Some style sheet languages might allow a wider variety of rules in the 'style' element than in the style attribute. For
example, with CSS, rules can be declared within a 'style' element that cannot be declared within a style attribute.

An example showing the 'style' element is provided above (see example).

6.12 The class attribute

Attribute definitions:

class = list
This attribute assigns a class name or set of class names to an element. Any number of elements may be
assigned the same class name or names. Multiple class names must be separated by white space characters.
Animatable: yes.

The class attribute assigns one or more class names to an element. The element may be said to belong to these
classes. A class name may be shared by several element instances. The class attribute has several roles:

● As a style sheet selector (when an author wishes to assign style information to a set of elements).
● For general purpose processing by user agents.

In the following example, the 'text' element is used in conjunction with the class attribute to markup document
messages. Messages appear in both English and French versions.

<!-- English messages -->
<text class="info" lang="en">Variable declared twice</text>
<text class="warning" lang="en">Undeclared variable</text>
<text class="error" lang="en">Bad syntax for variable name</text>
<!-- French messages -->
<text class="info" lang="fr">Variable déclarée deux fois</text>
<text class="warning" lang="fr">Variable indéfinie</text>
<text class="error" lang="fr">Erreur de syntaxe pour variable</text>

In an SVG user agent that supports CSS styling, the following CSS style rules would tell visual user agents to display
informational messages in green, warning messages in yellow, and error messages in red:

http://www.w3.org/TR/SVG/styling.html (10 of 14)4/2/07 5:32 PM

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/media.html#media-types
http://www.w3.org/TR/html401/

Styling - SVG 1.1 - 20030114

text.info { color: green }
text.warning { color: yellow }
text.error { color: red }

6.13 The style attribute

The style attribute allows per-element style rules to be specified directly on a given element. When CSS styling is
used, CSS inline style is specified by including semicolon-separated property declarations of the form "name : value"
within the style attribute

Attribute definitions:

style = style
This attribute specifies style information for the current element. The style attribute specifies style information
for a single element. The style sheet language of inline style rules is given by the value of attribute
contentStyleType on the 'svg' element. The syntax of style data depends on the style sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be reused for
several elements, authors should use the 'style' element to regroup that information. For optimal flexibility, authors
should define styles in external style sheets.

An example showing the style attribute is provided above (see example).

6.14 Specifying the default style sheet language

The contentStyleType attribute on the 'svg' element specifies the default style sheet language for the given document
fragment.

contentStyleType = "%ContentType;"
Identifies the default style sheet language for the given document. This attribute sets the style sheet language
for the style attributes that are available on many elements. The value %ContentType; specifies a media type,
per [RFC2045]. The default value is "text/css".
Animatable: no.

6.15 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SVG follows the property inheritance rules
defined in the CSS2 specification. The normative definition for property inheritance is section 6.2 of the CSS2
specification (see Inheritance).

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, as in CSS2, most elements inherit computed values [CSS2-COMPUTED]. For cases where something other
than computed values are inherited, the property definition will describe the inheritance rules. For specified values
[CSS2-SPECIFIED] which are expressed in user units, in pixels (e.g., "20px") or in absolute values [CSS2-
COMPUTED], the computed value equals the specified value. For specified values which use certain relative units (i.
e., em, ex and percentages), the computed value will have the same units as the value to which it is relative. Thus, if
the parent element has a 'font-size' of "10pt" and the current element has a 'font-size' of "120%", then the computed
value for 'font-size' on the current element will be "12pt". In cases where the referenced value for relative units is not
expressed in any of the standard SVG units (i.e., CSS units or user units), such as when a percentage is used
relative to the current viewport or an object bounding box, then the computed value will be in user units.

Note that SVG has some facilities wherein a property which is specified on an ancestor element might effect its

http://www.w3.org/TR/SVG/styling.html (11 of 14)4/2/07 5:32 PM

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/cascade.html#inheritance
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value
http://www.w3.org/TR/REC-CSS2/cascade.html#specified-value
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value

Styling - SVG 1.1 - 20030114

descendant element, even if the descendant element has a different assigned value for that property. For example, if
a 'clip-path' property is specified on an ancestor element, and the current element has a 'clip-path' of 'none', the
ancestor's clipping path still applies to the current element because the semantics of SVG state that the clipping path
used on a given element is the intersection of all clipping paths specified on itself and all ancestor elements. The key
concept is that property assignment (with possible property inheritance) happens first. After properties values have
been assigned to the various elements, then the user agent applies the semantics of each assigned property, which
might result in the property assignment of an ancestor element affecting the rendering of its descendants.

6.16 The scope/range of styles

The following define the scope/range of style sheets:

Stand-alone SVG document
There is one parse tree. Style sheets defined anywhere within the SVG document (in style elements or style
attributes, or in external style sheets linked with the style sheet processing instruction) apply across the entire
SVG document.

Stand-alone SVG document embedded in an HTML or XML document with the 'img', 'object' (HTML) or
'image' (SVG) elements

There are two completely separate parse trees; one for the referencing document (perhaps HTML or XHTML),
and one for the SVG document. Style sheets defined anywhere within the referencing document (in style
elements or style attributes, or in external style sheets linked with the style sheet processing instruction) apply
across the entire referencing document but have no effect on the referenced SVG document. Style sheets
defined anywhere within the referenced SVG document (in style elements or style attributes, or in external
style sheets linked with the style sheet processing instruction) apply across the entire SVG document, but do
not affect the referencing document (perhaps HTML or XHTML). To get the same styling across both the [X]
HTML document and the SVG document, link them both to the same style sheet.

Stand-alone SVG content textually included in an XML document
There is a single parse tree, using multiple namespaces; one or more subtrees are in the SVG namespace.
Style sheets defined anywhere within the XML document (in style elements or style attributes, or in external
style sheets linked with the style sheet processing instruction) apply across the entire document, including
those parts of it in the SVG namespace. To get different styling for the SVG part, use the style attribute, or put
an ID on the 'svg' element and use contextual CSS selectors, or use XSL selectors.

6.17 User agent style sheet

The user agent shall maintain a user agent style sheet [CSS2-CASCADE-RULES] for elements in the SVG
namespace for visual media [CSS2-VISUAL]. The user agent style sheet below is expressed using CSS syntax;
however, user agents are required to support the behavior that corresponds to this default style sheet even if CSS
style sheets are not supported in the user agent:

svg, symbol, image, marker, pattern, foreignObject { overflow: hidden }
svg { width:attr(width); height:attr(height) }

The first line of the above user agent style sheet will cause the initial clipping path to be established at the bounds of
the initial viewport. Furthermore, it will cause new clipping paths to be established at the bounds of the listed
elements, all of which are elements that establish a new viewport. (Refer to the description of SVG's use of the
'overflow' property for more information.)

The second line of the above user agent style sheet will cause the width and height attributes on the 'svg' element to
be used as the default values for the 'width' and 'height' properties during [CSS2-LAYOUT].

6.18 Aural style sheets

For the purposes of aural media, SVG represents a stylable XML grammar. In user agents that support CSS aural
style sheets, aural style properties [CSS2-AURAL] can be applied as defined in [CSS2].

http://www.w3.org/TR/SVG/styling.html (12 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#cascade
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-width
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-height
http://www.w3.org/TR/REC-CSS2/visuren.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/

Styling - SVG 1.1 - 20030114

Aural style properties can be applied to any SVG element that can contain character data content, including 'desc',
'title, 'tspan'. 'tref'. 'altGlyph' and 'textPath'. On user agents that support aural style sheets, the following [CSS2]
properties can be applied:

 'azimuth' [CSS2-azimuth]

 'cue' [CSS2-cue]

 'cue-after' [CSS2-cue-after]

 'cue-before' [CSS2-cue-before]

 'elevation' [CSS2-elevation]

 'pause' [CSS2-pause]

 'pause-after' [CSS2-pause-after]

 'pause-before' [CSS2-pause-before]

 'pitch' [CSS2-pitch]

 'pitch-range' [CSS2-pitch-range]

 'play-during' [CSS2-play-during]

 'richness' [CSS2-richness]

 'speak' [CSS2-speak]

 'speak-header' [CSS2-speak-header]

 'speak-numeral' [CSS2-speak-numeral]

 'speak-punctuation' [CSS2-speak-punctuation]

 'speech-rate' [CSS2-speech-rate]

 'stress' [CSS2-stress]

 'voice-family' [CSS2-voice-family]

 'volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM2], the user agent is required to support the
DOM interfaces defined in [DOM2-CSS] that correspond to aural properties [CSS2-AURAL]. (See Relationship with
DOM2 CSS object model.)

6.19 Style Module

Elements Attributes Content Model

style Core.attrib, type, media, title (#PCDATA)

6.19.1 Style Content Set

The Style Module defines the Style.class content set.

Content Set Name Elements in Content Set

Style.class style

6.19.2 Style Attribute Set

The Style Module defines the Style.attrib attribute set.

http://www.w3.org/TR/SVG/styling.html (13 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/SVG/svgdom.html#RelationShipWithCSSOM
http://www.w3.org/TR/SVG/svgdom.html#RelationShipWithCSSOM

Styling - SVG 1.1 - 20030114

Collection Name Attributes in Collection

Style.attrib style, class

6.20 DOM interfaces

The following interfaces are defined below: SVGStyleElement.

Interface SVGStyleElement

The SVGStyleElement interface corresponds to the 'style' element.

IDL Definition

interface SVGStyleElement : SVGElement {
 attribute DOMString xmlspace;
 // raises DOMException on setting
 attribute DOMString type;
 // raises DOMException on setting
 attribute DOMString media;
 // raises DOMException on setting
 attribute DOMString title;
 // raises DOMException on setting
};

Attributes

DOMString xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString type
Corresponds to attribute type on the given 'style' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString media
Corresponds to attribute media on the given 'style' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

DOMString title
Corresponds to attribute title on the given 'style' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change the
value of a readonly attribute.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/styling.html (14 of 14)4/2/07 5:32 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

7 Coordinate Systems, Transformations and Units

Contents

● 7.1 Introduction
● 7.2 The initial viewport
● 7.3 The initial coordinate system
● 7.4 Coordinate system transformations
● 7.5 Nested transformations
● 7.6 The transform attribute
● 7.7 The viewBox attribute
● 7.8 The preserveAspectRatio attribute
● 7.9 Establishing a new viewport
● 7.10 Units
● 7.11 Object bounding box units
● 7.12 Geographic Coordinate Systems
● 7.13 Viewport Attribute Module
● 7.14 DOM interfaces

7.1 Introduction

For all media, the SVG canvas describes "the space where the SVG content is rendered." The canvas is
infinite for each dimension of the space, but rendering occurs relative to a finite rectangular region of the
canvas. This finite rectangular region is called the SVG viewport. For visual media [CSS2-VISUAL], the SVG
viewport is the viewing area where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see
Establishing the size of the initial viewport) between the SVG document fragment and its parent (real or
implicit). Once that negotiation process is completed, the SVG user agent is provided the following information:

● a number (usually an integer) that represents the width in "pixels" of the viewport
● a number (usually an integer) that represents the height in "pixels" of the viewport
● (highly desirable but not required) a real number value that indicates the size in real world units, such

as millimeters, of a "pixel" (i.e., a px unit as defined in [CSS2 lengths])

Using the above information, the SVG user agent determines the viewport, an initial viewport coordinate
system and an initial user coordinate system such that the two coordinates systems are identical. Both
coordinates systems are established such that the origin matches the origin of the viewport (for the root

http://www.w3.org/TR/SVG/coords.html (1 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

viewport, the viewport origin is at the top/left corner), and one unit in the initial coordinate system equals one
"pixel" in the viewport. (See Initial coordinate system.) The viewport coordinate system is also called viewport
space and the user coordinate system is also called user space.

Lengths in SVG can be specified as:

● (if no unit identifier is provided) values in user space -- for example, "15"
● (if a unit identifier is provided) a length expressed as an absolute or relative unit measure -- for

example, "15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., a new current coordinate system) can be established at any place within an SVG
document fragment by specifying transformations in the form of transformation matrices or simple
transformation operations such as rotation, skewing, scaling and translation. Establishing new user spaces via
coordinate system transformations are fundamental operations to 2D graphics and represent the usual
method of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of
percentages units and provide a new reference rectangle for "fitting" a graphic into a particular rectangular
area. ("Fit" means that a given graphic is transformed in such a way that its bounding box in user space aligns
exactly with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent to determine the viewport into which the SVG user
agent can render the document. In some circumstances, SVG content will be embedded (by reference or
inline) within a containing document. This containing document might include attributes, properties and/or
other parameters (explicit or implicit) which specify or provide hints about the dimensions of the viewport for
the SVG content. SVG content itself optionally can provide information about the appropriate viewport region
for the content via the width and height XML attributes on the outermost 'svg' element. The negotiation
process uses any information provided by the containing document and the SVG content itself to choose the
viewport location and size.

The width attribute on the outermost 'svg' element establishes the viewport's width, unless the following
conditions are met:

● the SVG content is a separately stored resource that is embedded by reference (such as the 'object'
element in [XHTML]), or the SVG content is embedded inline within a containing document;

● and the referencing element or containing document is styled using CSS [CSS2] or XSL [XSL];
● and there are CSS-compatible positioning properties [CSS2-POSN] specified on the referencing

element (e.g., the 'object' element) or on the containing document's outermost 'svg' element that are
sufficient to establish the width of the viewport.

Under these conditions, the positioning properties establish the viewport's width.

Similarly, if there are positioning properties [CSS2-POSN] specified on the referencing element or on the
outermost 'svg' that are sufficient to establish the height of the viewport, then these positioning properties
establish the viewport's height; otherwise, the height attribute on the outermost 'svg' element establishes the
viewport's height.

If the width or height attributes on the outermost 'svg' element are in user units (i.e., no unit identifier has been
provided), then the value is assumed to be equivalent to the same number of "px" units (see Units).

http://www.w3.org/TR/SVG/coords.html (2 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

In the following example, an SVG graphic is embedded inline within a parent XML document which is
formatted using CSS layout rules. Since CSS positioning properties are not provided on the outermost 'svg'
element, the width="100px" and height="200px" attributes determine the size of the initial viewport:

<?xml version="1.0" standalone="yes"?>
<parent xmlns="http://some.url">

 <!-- SVG graphic -->
 <svg xmlns='http://www.w3.org/2000/svg'
 width="100px" height="200px" version="1.1">
 <path d="M100,100 Q200,400,300,100"/>
 <!-- rest of SVG graphic would go here -->
 </svg>

</parent>

The initial clipping path for the SVG document fragment is established according to the rules described in The
initial clipping path.

7.3 The initial coordinate system

For the outermost 'svg' element, the SVG user agent determines an initial viewport coordinate system and
an initial user coordinate system such that the two coordinates systems are identical. The origin of both
coordinate systems is at the origin of the viewport, and one unit in the initial coordinate system equals one
"pixel" (i.e., a px unit as defined in [CSS2 lengths]) in the viewport. In most cases, such as stand-alone SVG
documents or SVG document fragments embedded (by reference or inline) within XML parent documents
where the parent's layout is determined by CSS [CSS2] or XSL [XSL], the initial viewport coordinate system
(and therefore the initial user coordinate system) has its origin at the top/left of the viewport, with the positive
x-axis pointing towards the right, the positive y-axis pointing down, and text rendered with an "upright"
orientation, which means glyphs are oriented such that Roman characters and full-size ideographic characters
for Asian scripts have the top edge of the corresponding glyphs oriented upwards and the right edge of the
corresponding glyphs oriented to the right.

If the SVG implementation is part of a user agent which supports styling XML documents using CSS2-
compatible px units, then the SVG user agent should get its initial value for the size of a px unit in real world
units to match the value used for other XML styling operations; otherwise, if the user agent can determine the
size of a px unit from its environment, it should use that value; otherwise, it should choose an appropriate size
for one px unit. In all cases, the size of a px must be in conformance with the rules described in [CSS2
lengths].

Example InitialCoords below shows that the initial coordinate system has the origin at the top/left with the x-
axis pointing to the right and the y-axis pointing down. The initial user coordinate system has one user unit
equal to the parent (implicit or explicit) user agent's "pixel".

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="100px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example InitialCoords - SVG's initial coordinate system</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <line x1="0" y1="1.5" x2="300" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="100" />
 </g>
 <g fill="red" stroke="none" >

http://www.w3.org/TR/SVG/coords.html (3 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 <rect x="0" y="0" width="3" height="3" />
 <rect x="297" y="0" width="3" height="3" />
 <rect x="0" y="97" width="3" height="3" />
 </g>
 <g font-size="14" font-family="Verdana" >
 <text x="10" y="20">(0,0)</text>
 <text x="240" y="20">(300,0)</text>
 <text x="10" y="90">(0,100)</text>
 </g>
</svg>

Example InitialCoords

View this example as SVG (SVG-enabled browsers only)

7.4 Coordinate system transformations

A new user space (i.e., a new current coordinate system) can be established by specifying transformations
in the form of a transform attribute on a container element or graphics element or a viewBox attribute on an
'svg', 'symbol', 'marker', 'pattern' and the 'view' element. The transform and viewBox attributes transform user
space coordinates and lengths on sibling attributes on the given element (see effect of the transform attribute
on sibling attributes and effect of the viewBox attribute on sibling attributes) and all of its descendants.
Transformations can be nested, in which case the effect of the transformations are cumulative.

Example OrigCoordSys below shows a document without transformations. The text string is specified in the
initial coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example OrigCoordSys - Simple transformations: original picture</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <!-- Draw the axes of the original coordinate system -->
 <line x1="0" y1="1.5" x2="400" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="150" />
 </g>
 <g>
 <text x="30" y="30" font-size="20" font-family="Verdana" >
 ABC (orig coord system)
 </text>
 </g>
</svg>

http://www.w3.org/TR/SVG/coords.html (4 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/InitialCoords.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Example OrigCoordSys

View this example as SVG (SVG-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)"
on the third 'g' element below. The new user coordinate system has its origin at location (50,50) in the original
coordinate system. The result of this transformation is that the coordinate (30,30) in the new user coordinate
system gets mapped to coordinate (80,80) in the original coordinate system (i.e., the coordinates have been
translated by 50 units in X and 50 units in Y).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example NewCoordSys - New user coordinate system</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <!-- Draw the axes of the original coordinate system -->
 <line x1="0" y1="1.5" x2="400" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="150" />
 </g>
 <g>
 <text x="30" y="30" font-size="20" font-family="Verdana" >
 ABC (orig coord system)
 </text>
 </g>
 <!-- Establish a new coordinate system, which is
 shifted (i.e., translated) from the initial coordinate
 system by 50 user units along each axis. -->
 <g transform="translate(50,50)">
 <g fill="none" stroke="red" stroke-width="3" >
 <!-- Draw lines of length 50 user units along
 the axes of the new coordinate system -->
 <line x1="0" y1="0" x2="50" y2="0" stroke="red" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="30" y="30" font-size="20" font-family="Verdana" >
 ABC (translated coord system)
 </text>
 </g>
</svg>

http://www.w3.org/TR/SVG/coords.html (5 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/OrigCoordSys.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Example NewCoordSys

View this example as SVG (SVG-enabled browsers only)

Example RotateScale illustrates simple rotate and scale transformations. The example defines two new
coordinate systems:

● one which is the result of a translation by 50 units in X and 30 units in Y, followed by a rotation of 30
degrees

● another which is the result of a translation by 200 units in X and 40 units in Y, followed by a scale
transformation of 1.5.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="120px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example RotateScale - Rotate and scale transforms</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <!-- Draw the axes of the original coordinate system -->
 <line x1="0" y1="1.5" x2="400" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="120" />
 </g>
 <!-- Establish a new coordinate system whose origin is at (50,30)
 in the initial coord. system and which is rotated by 30 degrees. -->
 <g transform="translate(50,30)">
 <g transform="rotate(30)">
 <g fill="none" stroke="red" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
 ABC (rotate)
 </text>
 </g>
 </g>
 <!-- Establish a new coordinate system whose origin is at (200,40)
 in the initial coord. system and which is scaled by 1.5. -->
 <g transform="translate(200,40)">
 <g transform="scale(1.5)">
 <g fill="none" stroke="red" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
 ABC (scale)
 </text>

http://www.w3.org/TR/SVG/coords.html (6 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/NewCoordSys.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 </g>
 </g>
</svg>

Example RotateScale

View this example as SVG (SVG-enabled browsers only)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="120px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example Skew - Show effects of skewX and skewY</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <!-- Draw the axes of the original coordinate system -->
 <line x1="0" y1="1.5" x2="400" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="120" />
 </g>
 <!-- Establish a new coordinate system whose origin is at (30,30)
 in the initial coord. system and which is skewed in X by 30 degrees. -->
 <g transform="translate(30,30)">
 <g transform="skewX(30)">
 <g fill="none" stroke="red" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
 ABC (skewX)
 </text>
 </g>
 </g>
 <!-- Establish a new coordinate system whose origin is at (200,30)
 in the initial coord. system and which is skewed in Y by 30 degrees. -->
 <g transform="translate(200,30)">
 <g transform="skewY(30)">
 <g fill="none" stroke="red" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="20" font-family="Verdana" fill="blue" >
 ABC (skewY)
 </text>
 </g>
 </g>
</svg>

http://www.w3.org/TR/SVG/coords.html (7 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/RotateScale.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Example Skew

View this example as SVG (SVG-enabled browsers only)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a vector:
[a b c d e f].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate
system:

Simple transformations are represented in matrix form as follows:

● Translation is equivalent to the matrix

or [1 0 0 1 tx ty], where tx and ty are the distances to translate coordinates in X and Y, respectively.

● Scaling is equivalent to the matrix

or [sx 0 0 sy 0 0]. One unit in the X and Y directions in the new coordinate system equals sx and sy
units in the previous coordinate system, respectively.

● Rotation about the origin is equivalent to the matrix

http://www.w3.org/TR/SVG/coords.html (8 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/Skew.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by
angle a.

● A skew transformation along the x-axis is equivalent to the matrix

or [1 0 tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

● A skew transformation along the y-axis is equivalent to the matrix

or [1 tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e.,
concatenate) the subsequent transformation matrices onto previously defined transformations:

For each given element, the accumulation of all transformations that have been defined on the given element
and all of its ancestors up to and including the element that established the current viewport (usually, the 'svg'
element which is the most immediate ancestor to the given element) is called the current transformation
matrix or CTM. The CTM thus represents the mapping of current user coordinates to viewport coordinates:

Example Nested illustrates nested transformations.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

http://www.w3.org/TR/SVG/coords.html (9 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="150px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example Nested - Nested transformations</desc>
 <g fill="none" stroke="black" stroke-width="3" >
 <!-- Draw the axes of the original coordinate system -->
 <line x1="0" y1="1.5" x2="400" y2="1.5" />
 <line x1="1.5" y1="0" x2="1.5" y2="150" />
 </g>
 <!-- First, a translate -->
 <g transform="translate(50,90)">
 <g fill="none" stroke="red" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="16" font-family="Verdana" >
 Translate(1)
 </text>
 <!-- Second, a rotate -->
 <g transform="rotate(-45)">
 <g fill="none" stroke="green" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="16" font-family="Verdana" >
 Rotate(2)
 </text>
 <!-- Third, another translate -->
 <g transform="translate(130,160)">
 <g fill="none" stroke="blue" stroke-width="3" >
 <line x1="0" y1="0" x2="50" y2="0" />
 <line x1="0" y1="0" x2="0" y2="50" />
 </g>
 <text x="0" y="0" font-size="16" font-family="Verdana" >
 Translate(3)
 </text>
 </g>
 </g>
 </g>
</svg>

Example Nested

View this example as SVG (SVG-enabled browsers only)

In the example above, the CTM within the third nested transformation (i.e., the transform="translate(130,160)")
consists of the concatenation of the three transformations, as follows:

http://www.w3.org/TR/SVG/coords.html (10 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/Nested.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

7.6 The transform attribute

The value of the transform attribute is a <transform-list>, which is defined as a list of transform definitions,
which are applied in the order provided. The individual transform definitions are separated by whitespace and/
or a comma. The available types of transform definitions include:

● matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of a transformation matrix
of six values. matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [a b c d e f].

● translate(<tx> [<ty>]), which specifies a translation by tx and ty. If <ty> is not provided, it is assumed to
be zero.

● scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> is not provided, it is assumed
to be equal to <sx>.

● rotate(<rotate-angle> [<cx> <cy>]), which specifies a rotation by <rotate-angle> degrees about a given
point.
If optional parameters <cx> and <cy> are not supplied, the rotate is about the origin of the current user
coordinate system. The operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0].
If optional parameters <cx> and <cy> are supplied, the rotate is about the point (<cx>, <cy>). The
operation represents the equivalent of the following specification: translate(<cx>, <cy>) rotate(<rotate-
angle>) translate(-<cx>, -<cy>).

● skewX(<skew-angle>), which specifies a skew transformation along the x-axis.

● skewY(<skew-angle>), which specifies a skew transformation along the y-axis.

All numeric values are real <number>s.

If a list of transforms is provided, then the net effect is as if each transform had been specified separately in
the order provided. For example,

<g transform="translate(-10,-20) scale(2) rotate(45) translate(5,10)">
 <!-- graphics elements go here -->

http://www.w3.org/TR/SVG/coords.html (11 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

</g>

is functionally equivalent to:

<g transform="translate(-10,-20)">
 <g transform="scale(2)">
 <g transform="rotate(45)">
 <g transform="translate(5,10)">
 <!-- graphics elements go here -->
 </g>
 </g>
 </g>
</g>

The transform attribute is applied to an element before processing any other coordinate or length values
supplied for that element. In the element

<rect x="10" y="10" width="20" height="20" transform="scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled uniformly
by a factor of 2 by the transform attribute. Attributes x, y, width and height (and any other attributes or
properties) are treated as values in the new user coordinate system, not the previous user coordinate system.
Thus, the above 'rect' element is functionally equivalent to:

<g transform="scale(2)">
 <rect x="10" y="10" width="20" height="20"/>
</g>

The following is the Backus-Naur Form (BNF) for values for the transform attribute. The following notation is
used:

● *: 0 or more
● +: 1 or more
● ?: 0 or 1
● (): grouping
● |: separates alternatives
● double quotes surround literals

transform-list:
 wsp* transforms? wsp*
transforms:
 transform
 | transform comma-wsp+ transforms
transform:
 matrix
 | translate
 | scale
 | rotate
 | skewX
 | skewY
matrix:
 "matrix" wsp* "(" wsp*
 number comma-wsp
 number comma-wsp
 number comma-wsp
 number comma-wsp
 number comma-wsp
 number wsp* ")"
translate:

http://www.w3.org/TR/SVG/coords.html (12 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 "translate" wsp* "(" wsp* number (comma-wsp number)? wsp* ")"
scale:
 "scale" wsp* "(" wsp* number (comma-wsp number)? wsp* ")"
rotate:
 "rotate" wsp* "(" wsp* number (comma-wsp number comma-wsp number)? wsp* ")"
skewX:
 "skewX" wsp* "(" wsp* number wsp* ")"
skewY:
 "skewY" wsp* "(" wsp* number wsp* ")"
number:
 sign? integer-constant
 | sign? floating-point-constant
comma-wsp:
 (wsp+ comma? wsp*) | (comma wsp*)
comma:
 ","
integer-constant:
 digit-sequence
floating-point-constant:
 fractional-constant exponent?
 | digit-sequence exponent
fractional-constant:
 digit-sequence? "." digit-sequence
 | digit-sequence "."
exponent:
 ("e" | "E") sign? digit-sequence
sign:
 "+" | "-"
digit-sequence:
 digit
 | digit digit-sequence
digit:
 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
wsp:
 (#x20 | #x9 | #xD | #xA)

For the transform attribute:

 Animatable: yes.

See the 'animateTransform' element for information on animating transformations.

7.7 The viewBox attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The
viewBox attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports), plus the 'marker', 'pattern'
and 'view' elements have attribute viewBox. The value of the viewBox attribute is a list of four numbers <min-
x>, <min-y>, <width> and <height>, separated by whitespace and/or a comma, which specify a rectangle in
user space which should be mapped to the bounds of the viewport established by the given element, taking
into account attribute preserveAspectRatio. If specified, an additional transformation is applied to all
descendants of the given element to achieve the specified effect.

A negative value for <width> or <height> is an error (see Error processing). A value of zero disables rendering
of the element.

Example ViewBox illustrates the use of the viewBox attribute on the outermost 'svg' element to specify that

http://www.w3.org/TR/SVG/coords.html (13 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

the SVG content should stretch to fit bounds of the viewport.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="200px" version="1.1"
 viewBox="0 0 1500 1000" preserveAspectRatio="none"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example ViewBox - uses the viewBox
 attribute to automatically create an initial user coordinate
 system which causes the graphic to scale to fit into the
 viewport no matter what size the viewport is.</desc>
 <!-- This rectangle goes from (0,0) to (1500,1000) in user space.
 Because of the viewBox attribute above,
 the rectangle will end up filling the entire area
 reserved for the SVG content. -->
 <rect x="0" y="0" width="1500" height="1000"
 fill="yellow" stroke="blue" stroke-width="12" />
 <!-- A large, red triangle -->
 <path fill="red" d="M 750,100 L 250,900 L 1250,900 z"/>
 <!-- A text string that spans most of the viewport -->
 <text x="100" y="600" font-size="200" font-family="Verdana" >
 Stretch to fit
 </text>
</svg>

Rendered into
viewport with
width=300px,
height=200px

Rendered into
viewport with
width=150px,
height=200px

Example ViewBox

View this example as SVG (SVG-enabled browsers only)

The effect of the viewBox attribute is that the user agent automatically supplies the appropriate transformation
matrix to map the specified rectangle in user space to the bounds of a designated region (often, the viewport).
To achieve the effect of the example on the left, with viewport dimensions of 300 by 200 pixels, the user agent
needs to automatically insert a transformation which scales both X and Y by 0.2. The effect is equivalent to
having a viewport of size 300px by 200px and the following supplemental transformation in the document, as
follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

http://www.w3.org/TR/SVG/coords.html (14 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/ViewBox.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="300px" height="200px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <g transform="scale(0.2)">
 <!-- Rest of document goes here -->
 </g>
</svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user
agent needs to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is
equivalent to having a viewport of size 150px by 200px and the following supplemental transformation in the
document, as follows:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="150px" height="200px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <g transform="scale(0.1 0.2)">
 <!-- Rest of document goes here -->
 </g>
</svg>

(Note: in some cases the user agent will need to supply a translate transformation in addition to a scale
transformation. For example, on an outermost 'svg', a translate transformation will be needed if the viewBox
attributes specifies values other than zero for <min-x> or <min-y>.)

Unlike the transform attribute (see effect of the transform on sibling attributes), the automatic transformation
that is created due to a viewBox does not affect the x, y, width and height attributes (or in the case of the
'marker' element, the markerWidth and markerHeight attributes) on the element with the viewBox attribute.
Thus, in the example above which shows an 'svg' element which has attributes width, height and viewBox, the
width and height attributes represent values in the coordinate system that exists before the viewBox
transformation is applied. On the other hand, like the transform attribute, it does establish a new coordinate
system for all other attributes and for descendant elements.

For the viewBox attribute:

 Animatable: yes.

7.8 The preserveAspectRatio attribute

In some cases, typically when using the viewBox attribute, it is desirable that the graphics stretch to fit non-
uniformly to take up the entire viewport. In other cases, it is desirable that uniform scaling be used for the
purposes of preserving the aspect ratio of the graphics.

Attribute preserveAspectRatio="[defer] <align> [<meetOrSlice>]", which is available for all elements that
establish a new viewport (see elements that establish viewports), plus the 'image', 'marker', 'pattern' and 'view'
elements, indicates whether or not to force uniform scaling.

For elements that establish a new viewport (see elements that establish viewports), plus the 'marker', 'pattern'
and 'view' elements, preserveAspectRatio only applies when a value has been provided for viewBox on the
same element. For these elements, if attribute viewBox is not provided, then preserveAspectRatio is ignored.

For 'image' elements, preserveAspectRatio indicates how referenced images should be fitted with respect to
the reference rectangle and whether the aspect ratio of the referenced image should be preserved with

http://www.w3.org/TR/SVG/coords.html (15 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

respect to the current user coordinate system.

If the value of preserveAspectRatio on an 'image' element starts with 'defer' then the value of the
preserveAspectRatio attribute on the referenced content if present should be used. If the referenced content
lacks a value for preserveAspectRatio then the preserveAspectRatio attribute should be processed as normal
(ignoring 'defer'). For preserveAspectRatio on all other elements the 'defer' portion of the attribute is ignored.

The <align> parameter indicates whether to force uniform scaling and, if so, the alignment method to use in
case the aspect ratio of the viewBox doesn't match the aspect ratio of the viewport. The <align> parameter
must be one of the following strings:

● none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if
necessary such that the element's bounding box exactly matches the viewport rectangle.
(Note: if <align> is none, then the optional <meetOrSlice> value is ignored.)

● xMinYMin - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

● xMidYMin - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

● xMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

● xMinYMid - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

● xMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

● xMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

● xMinYMax - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

● xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

● xMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optional and, if provided, is separated from the <align> value by one or more
spaces and then must be one of the following strings:

● meet (the default) - Scale the graphic such that:
❍ aspect ratio is preserved
❍ the entire viewBox is visible within the viewport
❍ the viewBox is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will
extend beyond the bounds of the viewBox (i.e., the area into which the viewBox will draw will be smaller
than the viewport).

● slice - Scale the graphic such that:

http://www.w3.org/TR/SVG/coords.html (16 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

❍ aspect ratio is preserved
❍ the entire viewport is covered by the viewBox
❍ the viewBox is scaled down as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the viewBox does not match the viewport, some of the viewBox will
extend beyond the bounds of the viewport (i.e., the area into which the viewBox will draw is larger than
the viewport).

Example PreserveAspectRatio illustrates the various options on preserveAspectRatio. To save space, XML
entities have been defined for the three repeated graphic objects, the rectangle with the smile inside and the
outlines of the two rectangles which have the same dimensions as the target viewports. The example creates
several new viewports by including 'svg' sub-elements embedded inside the outermost 'svg' element (see
Establishing a new viewport).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"
[<!ENTITY Smile "
<rect x='.5' y='.5' width='29' height='39' fill='black' stroke='red'/>
<g transform='translate(0, 5)'>
<circle cx='15' cy='15' r='10' fill='yellow'/>
<circle cx='12' cy='12' r='1.5' fill='black'/>
<circle cx='17' cy='12' r='1.5' fill='black'/>
<path d='M 10 19 A 8 8 0 0 0 20 19' stroke='black' stroke-width='2'/>
</g>
">
<!ENTITY Viewport1 "<rect x='.5' y='.5' width='49' height='29'
fill='none' stroke='blue'/>">
<!ENTITY Viewport2 "<rect x='.5' y='.5' width='29' height='59'
fill='none' stroke='blue'/>">
]>
<svg width="450px" height="300px" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example PreserveAspectRatio - illustrates preserveAspectRatio attribute</desc>
 <rect x="1" y="1" width="448" height="298"
 fill="none" stroke="blue"/>
 <g font-size="9">
 <text x="10" y="30">SVG to fit</text>
 <g transform="translate(20,40)">&Smile;</g>
 <text x="10" y="110">Viewport 1</text>
 <g transform="translate(10,120)">&Viewport1;</g>
 <text x="10" y="180">Viewport 2</text>
 <g transform="translate(20,190)">&Viewport2;</g>
 <g id="meet-group-1" transform="translate(100, 60)">
 <text x="0" y="-30">--------------- meet ---------------</text>
 <g><text y="-10">xMin*</text>&Viewport1;
 <svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 <g transform="translate(70,0)"><text y="-10">xMid*</text>&Viewport1;
 <svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 <g transform="translate(0,70)"><text y="-10">xMax*</text>&Viewport1;
 <svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 </g>
 <g id="meet-group-2" transform="translate(250, 60)">
 <text x="0" y="-30">---------- meet ----------</text>
 <g><text y="-10">*YMin</text>&Viewport2;
 <svg preserveAspectRatio="xMinYMin meet" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 <g transform="translate(50, 0)"><text y="-10">*YMid</text>&Viewport2;

http://www.w3.org/TR/SVG/coords.html (17 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 <svg preserveAspectRatio="xMidYMid meet" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 <g transform="translate(100, 0)"><text y="-10">*YMax</text>&Viewport2;
 <svg preserveAspectRatio="xMaxYMax meet" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 </g>
 <g id="slice-group-1" transform="translate(100, 220)">
 <text x="0" y="-30">---------- slice ----------</text>
 <g><text y="-10">xMin*</text>&Viewport2;
 <svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 <g transform="translate(50,0)"><text y="-10">xMid*</text>&Viewport2;
 <svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 <g transform="translate(100,0)"><text y="-10">xMax*</text>&Viewport2;
 <svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"
 width="30" height="60">&Smile;</svg></g>
 </g>
 <g id="slice-group-2" transform="translate(250, 220)">
 <text x="0" y="-30">--------------- slice ---------------</text>
 <g><text y="-10">*YMin</text>&Viewport1;
 <svg preserveAspectRatio="xMinYMin slice" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 <g transform="translate(70,0)"><text y="-10">*YMid</text>&Viewport1;
 <svg preserveAspectRatio="xMidYMid slice" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 <g transform="translate(140,0)"><text y="-10">*YMax</text>&Viewport1;
 <svg preserveAspectRatio="xMaxYMax slice" viewBox="0 0 30 40"
 width="50" height="30">&Smile;</svg></g>
 </g>
 </g>
</svg>

Example PreserveAspectRatio

View this example as SVG (SVG-enabled browsers only)

For the preserveAspectRatio attribute:

http://www.w3.org/TR/SVG/coords.html (18 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/PreserveAspectRatio.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 Animatable: yes.

7.9 Establishing a new viewport

At any point in an SVG drawing, you can establish a new viewport into which all contained graphics is drawn
by including an 'svg' element inside SVG content. By establishing a new viewport, you also implicitly establish
a new viewport coordinate system, a new user coordinate system, and, potentially, a new clipping path (see
the definition of the 'overflow' property). Additionally, there is a new meaning for percentage units defined to
be relative to the current viewport since a new viewport has been established (see Units)

The bounds of the new viewport are defined by the x, y, width and height attributes on the element
establishing the new viewport, such as an 'svg' element. Both the new viewport coordinate system and the
new user coordinate system have their origins at (x, y), where x and y represent the value of the
corresponding attributes on the element establishing the viewport. The orientation of the new viewport
coordinate system and the new user coordinate system correspond to the orientation of the current user
coordinate system for the element establishing the viewport. A single unit in the new viewport coordinate
system and the new user coordinate system are the same size as a single unit in the current user coordinate
system for the element establishing the viewport.

Here is an example:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="3in" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>This SVG drawing embeds another one,
 thus establishing a new viewport
 </desc>
 <!-- The following statement establishing a new viewport
 and renders SVG drawing B into that viewport -->
 <svg x="25%" y="25%" width="50%" height="50%">
 <!-- drawing B goes here -->
 </svg>
</svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

The following elements establish new viewports:

● The 'svg' element
● A 'symbol' element define new viewports whenever they are instanced by a 'use' element.
● An 'image' element that references an SVG file will result in the establishment of a temporary new

viewport since the referenced resource by definition will have an 'svg' element.
● A 'foreignObject' element creates a new viewport for rendering the content that is within the element.

Whether a new viewport also establishes a new additional clipping path is determined by the value of the
'overflow' property on the element that establishes the new viewport. If a clipping path is created to
correspond to the new viewport, the clipping path's geometry is determined by the value of the 'clip' property.
Also, see Clip to viewport vs. clip to viewBox.

7.10 Units

http://www.w3.org/TR/SVG/coords.html (19 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

All coordinates and lengths in SVG can be specified with or without a unit identifier.

When a coordinate or length value is a number without a unit identifier (e.g., "25"), then the given coordinate
or length is assumed to be in user units (i.e., a value in the current user coordinate system). For example:

<text style="font-size: 50">Text size is 50 user units</text>

Alternatively, a coordinate or length value can be expressed as a number following by a unit identifier (e.g.,
"25cm" or "15em"). The list of unit identifiers in SVG matches the list of unit identifiers in CSS: em, ex, px, pt,
pc, cm, mm, in and percentages. The following describes how the various unit identifiers are processed:

● As in CSS, the em and ex unit identifiers are relative to the current font's font-size and x-height,
respectively.

● One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of
"5".

Note that at initialization, a user unit in the the initial coordinate system is equivalenced to the parent
environment's notion of a px unit. Thus, in the the initial coordinate system, because the user
coordinate system aligns exactly with the parent's coordinate system, and because often the parent's
coordinate system aligns with the device pixel grid, "5px" might actually map to 5 devices pixels.
However, if there are any coordinate system transformation due to the use of transform or viewBox
attributes, because "5px" maps to 5 user units and because the coordinate system transformations
have resulted in a revised user coordinate system, "5px" likely will not map to 5 device pixels. As a
result, in most circumstances, "px" units will not map to the device pixel grid.

● The other absolute unit identifiers from CSS (i.e., pt, pc, cm, mm, in) are all defined as an appropriate
multiple of one px unit (which, according to the previous item, is defined to be equal to one user unit),
based on what the SVG user agent determines is the size of a px unit (possibly passed from the parent
processor or environment at initialization time). For example, suppose that the user agent can
determine from its environment that "1px" corresponds to "0.2822222mm" (i.e., 90dpi). Then, for all
processing of SVG content:

❍ "1pt" equals "1.25px" (and therefore 1.25 user units)
❍ "1pc" equals "15px" (and therefore 15 user units)
❍ "1mm" would be "3.543307px" (3.543307 user units)
❍ "1cm" equals "35.43307px" (and therefore 35.43307 user units)
❍ "1in" equals "90px" (and therefore 90 user units)

Note that use of px units or any other absolute unit identifiers can cause inconsistent visual results on different
viewing environments since the size of "1px" may map to a different number of user units on different
systems; thus, absolute units identifiers are only recommended for the width and the height on outermost 'svg'
elements and situations where the content contains no transformations and it is desirable to specify values
relative to the device pixel grid or to a particular real world unit size.

For percentage values that are defined to be relative to the size of viewport:

● For any x-coordinate value or width value expressed as a percentage of the viewport, the value to use
is the specified percentage of the actual-width in user units for the nearest containing viewport, where
actual-width is the width dimension of the viewport element within the user coordinate system for the
viewport element.

● For any y-coordinate value or height value expressed as a percentage of the viewport, the value to use
is the specified percentage of the actual-height in user units for the nearest containing viewport, where
actual-height is the height dimension of the viewport element within the user coordinate system for the
viewport element.

http://www.w3.org/TR/SVG/coords.html (20 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

● For any other length value expressed as a percentage of the viewport, the percentage is calculated as
the specified percentage of sqrt((actual-width)**2 + (actual-height)**2))/sqrt(2).

Example Units below illustrates some of the processing rules for different types of units.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="400px" height="200px" viewBox="0 0 4000 2000"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <title>Example Units</title>
 <desc>Illustrates various units options</desc>
 <!-- Frame the picture -->
 <rect x="5" y="5" width="3990" height="1990"
 fill="none" stroke="blue" stroke-width="10"/>
 <g fill="blue" stroke="red" font-family="Verdana" font-size="150">
 <!-- Absolute unit specifiers -->
 <g transform="translate(400,0)">
 <text x="-50" y="300" fill="black" stroke="none">Abs. units:</text>
 <rect x="0" y="400" width="4in" height="2in" stroke-width=".4in"/>
 <rect x="0" y="750" width="384" height="192" stroke-width="38.4"/>
 <g transform="scale(2)">
 <rect x="0" y="600" width="4in" height="2in" stroke-width=".4in"/>
 </g>
 </g>
 <!-- Relative unit specifiers -->
 <g transform="translate(1600,0)">
 <text x="-50" y="300" fill="black" stroke="none">Rel. units:</text>
 <rect x="0" y="400" width="2.5em" height="1.25em" stroke-width=".25em"/>
 <rect x="0" y="750" width="375" height="187.5" stroke-width="37.5"/>
 <g transform="scale(2)">
 <rect x="0" y="600" width="2.5em" height="1.25em" stroke-width=".25em"/>
 </g>
 </g>
 <!-- Percentages -->
 <g transform="translate(2800,0)">
 <text x="-50" y="300" fill="black" stroke="none">Percentages:</text>
 <rect x="0" y="400" width="10%" height="10%" stroke-width="1%"/>
 <rect x="0" y="750" width="400" height="200" stroke-width="31.62"/>
 <g transform="scale(2)">
 <rect x="0" y="600" width="10%" height="10%" stroke-width="1%"/>
 </g>
 </g>
 </g>
</svg>

http://www.w3.org/TR/SVG/coords.html (21 of 41)4/2/07 5:33 PM

http://www.w3.org/2000/svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Example Units

View this example as SVG (SVG-enabled browsers only)

The three rectangles on the left demonstrate the use of one of the absolute unit identifiers, the "in" unit (inch).
The reference image above was generated on a 96dpi system (i.e., 1 inch = 96 pixels). Therefore, the
topmost rectangle, which is specified in inches, is exactly the same size as the middle rectangle, which is
specified in user units such that there are 96 user units for each corresponding inch in the topmost rectangle.
(Note: on systems with different screen resolutions, the top and middle rectangles will likely be rendered at
different sizes.) The bottom rectangle of the group illustrates what happens when values specified in inches
are scaled.

The three rectangles in the middle demonstrate the use of one of the relative unit identifiers, the "em" unit.
Because the 'font-size' property has been set to 150 on the outermost 'g' element, each "em" unit is equal to
150 user units. The topmost rectangle, which is specified in "em" units, is exactly the same size as the middle
rectangle, which is specified in user units such that there are 150 user units for each corresponding "em" unit
in the topmost rectangle. The bottom rectangle of the group illustrates what happens when values specified in
"em" units are scaled.

The three rectangles on the right demonstrate the use of percentages. Note that the width and height of the
viewport in the user coordinate system for the viewport element (in this case, the outermost 'svg' element) are
4000 and 2000, respectively, because processing the viewBox attribute results in a transformed user
coordinate system. The topmost rectangle, which is specified in percentage units, is exactly the same size as
the middle rectangle, which is specified in equivalent user units. In particular, note that the 'stroke-width'
property in the middle rectangle is set to 1% of the sqrt((actual-width)**2 + (actual-height)
**2)) / sqrt(2), which in this case is .01*sqrt(4000*4000+2000*2000)/sqrt(2), or 31.62. The bottom
rectangle of the group illustrates what happens when values specified in percentage units are scaled.

7.11 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions (and, in
some cases, percentages) of the bounding box (via keyword objectBoundingBox) on a given element:

Element Attribute Effect

'linearGradient' gradientUnits="objectBoundingBox"

Indicates that the attributes which specify the
gradient vector (x1, y1, x2, y2) represent
fractions or percentages of the bounding box of
the element to which the gradient is applied.

'radialGradient' gradientUnits="objectBoundingBox"

Indicates that the attributes which specify the
center (cx, cy), the radius (r) and focus (fx, fy)
represent fractions or percentages of the
bounding box of the element to which the
gradient is applied.

'pattern' patternUnits="objectBoundingBox"

Indicates that the attributes which define how to
tile the pattern (x, y, width, height) are
established using the bounding box of the
element to which the pattern is applied.

http://www.w3.org/TR/SVG/coords.html (22 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/images/coords/Units.svg

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

'pattern' patternContentUnits="objectBoundingBox"

Indicates that the user coordinate system for the
contents of the pattern is established using the
bounding box of the element to which the pattern
is applied.

'clipPath' clipPathUnits="objectBoundingBox"

Indicates that the user coordinate system for the
contents of the 'clipPath' element is established
using the bounding box of the element to which
the clipping path is applied.

'mask' maskUnits="objectBoundingBox"

Indicates that the attributes which define the
masking region (x, y, width, height) is
established using the bounding box of the
element to which the mask is applied.

'mask' maskContentUnits="objectBoundingBox"

Indicates that the user coordinate system for the
contents of the 'mask' element are established
using the bounding box of the element to which
the mask is applied.

'filter' filterUnits="objectBoundingBox"

Indicates that the attributes which define the filter
effects region (x, y, width, height) represent
fractions or percentages of the bounding box of
the element to which the filter is applied.

'filter' primitiveUnits="objectBoundingBox"

Indicates that the various length values within
the filter primitives represent fractions or
percentages of the bounding box of the element
to which the filter is applied.

In the discussion that follows, the term applicable element is the element to which the given effect applies.
For gradients and patterns, the applicable element is the graphics element which has its 'fill' or 'stroke'
property referencing the given gradient or pattern. (See Inheritance of Painting Properties. For special rules
concerning text elements, see the discussion of object bounding box units and text elements.) For clipping
paths, masks and filters, the applicable element can be either a container element or a graphics element.

When keyword objectBoundingBox is used, then the effect is as if a supplemental transformation matrix were
inserted into the list of nested transformation matrices to create a new user coordinate system.

First, the (minx,miny) and (maxx,maxy) coordinates are determined for the applicable element and all of its
descendants. The values minx, miny, maxx and maxy are determined by computing the maximum extent of
the shape of the element in X and Y with respect to the user coordinate system for the applicable element.
The bounding box is the tightest fitting rectangle aligned with the axes of the applicable element's user
coordinate system that entirely encloses the applicable element and its descendants. The bounding box is
computed exclusive of any values for clipping, masking, filter effects, opacity and stroke-width. For curved
shapes, the bounding box encloses all portions of the shape, not just end points. For 'text' elements, for the
purposes of the bounding box calculation, each glyph is treated as a separate graphics element. The
calculations assume that all glyphs occupy the full glyph cell. For example, for horizontal text, the calculations
assume that each glyph extends vertically to the full ascent and descent values for the font.

Then, coordinate (0,0) in the new user coordinate system is mapped to the (minx,miny) corner of the tight
bounding box within the user coordinate system of the applicable element and coordinate (1,1) in the new
user coordinate system is mapped to the (maxx,maxy) corner of the tight bounding box of the applicable
element. In most situations, the following transformation matrix produces the correct effect:

[(maxx-minx) 0 0 (maxy-miny) minx miny]

http://www.w3.org/TR/SVG/coords.html (23 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

When percentages are used with attributes that define the gradient vector, the pattern tile, the filter region or
the masking region, a percentage represents the same value as the corresponding decimal value (e.g., 50%
means the same as 0.5). If percentages are used within the content of a 'pattern', 'clipPath', 'mask' or 'filter'
element, these values are treated according to the processing rules for percentages as defined in Units.

Any numeric value can be specified for values expressed as a fraction or percentage of object bounding box
units. In particular, fractions less are zero or greater than one and percentages less than 0% or greater than
100% can be specified.

Keyword objectBoundingBox should not be used when the geometry of the applicable element has no width
or no height, such as the case of a horizontal or vertical line, even when the line has actual thickness when
viewed due to having a non-zero stroke width since stroke width is ignored for bounding box calculations.
When the geometry of the applicable element has no width or height and objectBoundingBox is specified,
then the given effect (e.g., a gradient or a filter) will be ignored.

7.12 Geographic Coordinate Systems

In order to allow interoperability between SVG content generators and user agents dealing with maps
encoded in SVG, SVG encourages the use of a common metadata definition for describing the coordinate
system used to generate SVG documents.

Such metadata should be added under the 'metadata' element of the topmost 'svg' element describing the
map. They consist of an RDF description of the Coordinate Reference System definition used to generate the
SVG map.

The definition should be conformant to the XML grammar described in the OpenGIS Recommendation on the
Definition of Coordinate Reference System [OpenGIS Coordinate Systems]. In order to correctly map the 2-
dimensional data used by SVG, the CRS must be of subtype ProjectedCRS or Geographic2dCRS. The first
axis of the described CRS maps the SVG x-axis and the second axis maps the SVG y-axis. Optionally, an
additional affine transformation may have been applied during this mapping. This additional transformation is
described by an SVG transform attribute that can be added to the OpenGIS 'CoordinateReferenceSystem'
element. Note that the transform attribute on the 'CoordinateReferenceSystem' does not indicate that a
transformation should be applied to the data within the file, it simply describes the transformation that was
applied to the data when being encoded in SVG.

There are three typical uses for the SVG transform attribute. These are described below and used in the
examples.

● Most ProjectedCRS have the north direction represented by positive values of the second axis and
conversely SVG has a y-down coordinate system. That's why, in order to follow the usual way to
represent a map with the north at its top, it is recommended for that kind of ProjectedCRS to use the
SVG transform attribute with a 'scale(1, -1)' value as in the third example below.

● Most Geographic2dCRS have the latitude as their first axis rather than the longitude, which means that
the south-north axis would be represented by the x-axis in SVG instead of the usual y-axis. That's why,
in order to follow the usual way to represent a map with the north at its top, it is recommended for that
kind of Geographic2dCRS to use the SVG transform attribute with a 'rotate(-90)' value as in the first
example (while also adding the scale(1, -1) as for ProjectedCRS).

● In addition, when converting for profiles which place restrictions on precision of real number values, it
may be useful to add an additional scaling factor to retain good precision for a specific area. When
generating an SVG document from WGS84 geographic coordinates (EPGS 4326), we recommend the

http://www.w3.org/TR/SVG/coords.html (24 of 41)4/2/07 5:33 PM

http://www.opengis.org/techno/specs/01-014r3.pdf

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

use of an additional 100 times scaling factor corresponding to an SVG transform attribute with a 'rotate(-
90) scale(100)' value (shown in the second example). Different scaling values may be required
depending on the particular CRS.

The main purpose of such metadata is to indicate to the User Agent that two or more SVG documents can be
overlayed or merged into a single document. Obviously, if two maps reference the same Coordinate
Reference System definition and have the same SVG transform attribute value then they can be overlayed
without reprojecting the data. If the maps reference different Coordinate Reference Systems and/or have
different SVG transform attribute values, then a specialized cartographic User Agent may choose to transform
the coordinate data to overlay the data. However, typical SVG user agents are not required to perform these
types of transformations, or even recognize the metadata.

Below is a simple example of the coordinate metadata, which describes the coordinate system used by the
document via a URI.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100" height="100" viewBox="0 0 1000 1000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <metadata>
 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:crs = "http://www.ogc.org/crs"
 xmlns:svg="http://wwww.w3.org/2000/svg">
 <rdf:Description>
 <!-- The Coordinate Reference System is described
 through an URI. -->
 <crs:CoordinateReferenceSystem svg:transform="rotate(-90)"
 rdf:resource=""http://www.example.org/srs/epsg.xml#4326"/>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
 <!-- The actual map content -->
</svg>

The second example uses a well-known identifier to describe the coordinate system. Note that the
coordinates used in the document have had the supplied transform applied.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100" height="100" viewBox="0 0 1000 1000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <metadata>
 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:crs = "http://www.ogc.org/crs"
 xmlns:svg="http://wwww.w3.org/2000/svg">
 <rdf:Description>
 <!-- In case of a well-known Coordinate Reference System
 an 'Identifier' is enough to describe the CRS -->
 <crs:CoordinateReferenceSystem svg:transform="rotate(-90) scale(100, 100)">
 <crs:Identifier>
 <crs:code>4326</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 </crs:CoordinateReferenceSystem>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
 <!-- The actual map content -->
</svg>

The third example defines the coordinate system completely within the SVG document.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100" height="100" viewBox="0 0 1000 1000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <metadata>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:crs="http://www.ogc.org/crs"
 xmlns:svg="http://wwww.w3.org/2000/svg">
 <rdf:Description>

http://www.w3.org/TR/SVG/coords.html (25 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 <!-- For other CRS it should be entirely defined -->
 <crs:CoordinateReferenceSystem svg:transform="scale(1,-1)">
 <crs:NameSet>
 <crs:name>Mercator projection of WGS84</crs:name>
 </crs:NameSet>
 <crs:ProjectedCRS>
 <!-- The actual definition of the CRS -->
 <crs:CartesianCoordinateSystem>
 <crs:dimension>2</crs:dimension>
 <crs:CoordinateAxis>
 <crs:axisDirection>north</crs:axisDirection>
 <crs:AngularUnit>
 <crs:Identifier>
 <crs:code>9108</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 </crs:AngularUnit>
 </crs:CoordinateAxis>
 <crs:CoordinateAxis>
 <crs:axisDirection>east</crs:axisDirection>
 <crs:AngularUnit>
 <crs:Identifier>
 <crs:code>9108</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 </crs:AngularUnit>
 </crs:CoordinateAxis>
 </crs:CartesianCoordinateSystem>
 <crs:CoordinateReferenceSystem>
 <!-- the reference system of that projected system is
 WGS84 which is EPSG 4326 in EPSG codeSpace -->
 <crs:NameSet>
 <crs:name>WGS 84</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>4326</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 </crs:CoordinateReferenceSystem>
 <crs:CoordinateTransformationDefinition>
 <crs:sourceDimensions>2</crs:sourceDimensions>
 <crs:targetDimensions>2</crs:targetDimensions>
 <crs:ParameterizedTransformation>
 <crs:TransformationMethod>
 <!-- the projection is a Mercator projection which is
 EPSG 9805 in EPSG codeSpace -->
 <crs:NameSet>
 <crs:name>Mercator</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>9805</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 <crs:description>Mercator (2SP)</crs:description>
 </crs:TransformationMethod>
 <crs:Parameter>
 <crs:NameSet>
 <crs:name>Latitude of 1st standart parallel</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>8823</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 <crs:value>0</crs:value>
 </crs:Parameter>
 <crs:Parameter>
 <crs:NameSet>
 <crs:name>Longitude of natural origin</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>8802</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 <crs:value>0</crs:value>
 </crs:Parameter>
 <crs:Parameter>
 <crs:NameSet>
 <crs:name>False Easting</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>8806</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>

http://www.w3.org/TR/SVG/coords.html (26 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

 <crs:value>0</crs:value>
 </crs:Parameter>
 <crs:Parameter>
 <crs:NameSet>
 <crs:name>False Northing</crs:name>
 </crs:NameSet>
 <crs:Identifier>
 <crs:code>8807</crs:code>
 <crs:codeSpace>EPSG</crs:codeSpace>
 <crs:edition>5.2</crs:edition>
 </crs:Identifier>
 <crs:value>0</crs:value>
 </crs:Parameter>
 </crs:ParameterizedTransformation>
 </crs:CoordinateTransformationDefinition>
 </crs:ProjectedCRS>
 </crs:CoordinateReferenceSystem>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
 <!-- the actual map content -->
</svg>

7.13 Viewport Attribute Module

The Viewport Attribute Module defines the Viewport.attrib attribute set.

Collection Name Attributes in Collection

Viewport.attrib clip, overflow

7.14 DOM interfaces

The following interfaces are defined below: SVGPoint, SVGPointList, SVGMatrix, SVGTransform,
SVGTransformList, SVGAnimatedTransformList, SVGPreserveAspectRatio,
SVGAnimatedPreserveAspectRatio.

Interface SVGPoint

Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x,y) coordinate
pair. When used in matrix operations, an SVGPoint is treated as a vector of the form:

[x]
[y]
[1]

IDL Definition

interface SVGPoint {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 SVGPoint matrixTransform (in SVGMatrix matrix);
};

Attributes

http://www.w3.org/TR/SVG/coords.html (27 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

float x
The x coordinate.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float y
The y coordinate.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

Methods
matrixTransform

Applies a 2x3 matrix transformation on this SVGPoint object and returns a new, transformed
SVGPoint object:

newpoint = matrix * thispoint

Parameters
in SVGMatrix matrix The matrix which is to be applied to this SVGPoint object.

Return value
SVGPoint A new SVGPoint object.

No Exceptions

Interface SVGPointList

This interface defines a list of SVGPoint objects.

SVGPointList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGPointList {
 readonly attribute unsigned long numberOfItems;
 void clear ()
 raises(DOMException);
 SVGPoint initialize (in SVGPoint newItem)
 raises(DOMException, SVGException);
 SVGPoint getItem (in unsigned long index)
 raises(DOMException);
 SVGPoint insertItemBefore (in SVGPoint newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGPoint replaceItem (in SVGPoint newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGPoint removeItem (in unsigned long index)
 raises(DOMException);
 SVGPoint appendItem (in SVGPoint newItem)
 raises(DOMException, SVGException);
};

http://www.w3.org/TR/SVG/coords.html (28 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Attributes

readonly unsigned long numberOfItems
The number of items in the list.

Methods
clear

Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters

in SVGPoint newItem The item which should become the only member of the list.
Return value

SVGPoint The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

getItem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.

Return value
SVGPoint The selected item.

Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater

than or equal to numberOfItems.
insertItemBefore

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is
already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGPoint newItem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be inserted.
The first item is number 0.
If the index is equal to 0, then the new item is inserted at the front
of the list. If the index is greater than or equal to numberOfItems,
then the new item is appended to the end of the list.

Return value
SVGPoint The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

replaceItem

http://www.w3.org/TR/SVG/coords.html (29 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed
from its previous list before it is inserted into this list.
Parameters

in SVGPoint newItem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is
number 0.

Return value
SVGPoint The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfItems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

removeItem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is
number 0.

Return value
SVGPoint The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfItems.

appendItem
Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in SVGPoint newItem The item which is to be inserted into the list. The first item is
number 0.

Return value
SVGPoint The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:

[a c e]
[b d f]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c e]

http://www.w3.org/TR/SVG/coords.html (30 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

[b d f]
[0 0 1]

IDL Definition

interface SVGMatrix {
 attribute float a;
 // raises DOMException on setting
 attribute float b;
 // raises DOMException on setting
 attribute float c;
 // raises DOMException on setting
 attribute float d;
 // raises DOMException on setting
 attribute float e;
 // raises DOMException on setting
 attribute float f;
 // raises DOMException on setting
 SVGMatrix multiply (in SVGMatrix secondMatrix);
 SVGMatrix inverse ()
 raises(SVGException);
 SVGMatrix translate (in float x, in float y);
 SVGMatrix scale (in float scaleFactor);
 SVGMatrix scaleNonUniform (in float scaleFactorX, in float scaleFactorY);
 SVGMatrix rotate (in float angle);
 SVGMatrix rotateFromVector (in float x, in float y)
 raises(SVGException);
 SVGMatrix flipX ();
 SVGMatrix flipY ();
 SVGMatrix skewX (in float angle);
 SVGMatrix skewY (in float angle);
};

Attributes

float a
The a component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float b
The b component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float c
The c component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float d
The d component of the matrix.
Exceptions on setting

http://www.w3.org/TR/SVG/coords.html (31 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float e
The e component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float f
The f component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

Methods
multiply

Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the
resulting new matrix.
Parameters

in SVGMatrix secondMatrix The matrix which is post-multiplied to this matrix.
Return value

SVGMatrix The resulting matrix.
No Exceptions

inverse
Returns the inverse matrix.
No Parameters
Return value

SVGMatrix The inverse matrix.
Exceptions

SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if this matrix is not
invertable.

translate
Post-multiplies a translation transformation on the current matrix and returns the resulting matrix.
Parameters

in float x The distance to translate along the x-axis.

in float y The distance to translate along the y-axis.
Return value

SVGMatrix The resulting matrix.
No Exceptions

scale
Post-multiplies a uniform scale transformation on the current matrix and returns the resulting
matrix.
Parameters

in float scaleFactor Scale factor in both X and Y.
Return value

SVGMatrix The resulting matrix.
No Exceptions

scaleNonUniform
Post-multiplies a non-uniform scale transformation on the current matrix and returns the resulting
matrix.
Parameters

in float scaleFactorX Scale factor in X.

in float scaleFactorY Scale factor in Y.
Return value

http://www.w3.org/TR/SVG/coords.html (32 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

SVGMatrix The resulting matrix.
No Exceptions

rotate
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
Parameters

in float angle Rotation angle.
Return value

SVGMatrix The resulting matrix.
No Exceptions

rotateFromVector
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
The rotation angle is determined by taking (+/-) atan(y/x). The direction of the vector (x,y)
determines whether the positive or negative angle value is used.
Parameters

in float x The X coordinate of the vector (x,y). Must not be zero.

in float y The Y coordinate of the vector (x,y). Must not be zero.
Return value

SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.

flipX
Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.
No Parameters
Return value

SVGMatrix The resulting matrix.
No Exceptions

flipY
Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.
No Parameters
Return value

SVGMatrix The resulting matrix.
No Exceptions

skewX
Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.
Parameters

in float angle Skew angle.
Return value

SVGMatrix The resulting matrix.
No Exceptions

skewY
Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.
Parameters

in float angle Skew angle.
Return value

SVGMatrix The resulting matrix.
No Exceptions

Interface SVGTransform

SVGTransform is the interface for one of the component transformations within a SVGTransformList; thus,

http://www.w3.org/TR/SVG/coords.html (33 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

a SVGTransform object corresponds to a single component (e.g., "scale(..)" or "matrix(...)") within a transform
attribute specification.

IDL Definition

interface SVGTransform {
 // Transform Types
 const unsigned short SVG_TRANSFORM_UNKNOWN = 0;
 const unsigned short SVG_TRANSFORM_MATRIX = 1;
 const unsigned short SVG_TRANSFORM_TRANSLATE = 2;
 const unsigned short SVG_TRANSFORM_SCALE = 3;
 const unsigned short SVG_TRANSFORM_ROTATE = 4;
 const unsigned short SVG_TRANSFORM_SKEWX = 5;
 const unsigned short SVG_TRANSFORM_SKEWY = 6;
 readonly attribute unsigned short type;
 readonly attribute SVGMatrix matrix;
 readonly attribute float angle;
 void setMatrix (in SVGMatrix matrix);
 void setTranslate (in float tx, in float ty);
 void setScale (in float sx, in float sy);
 void setRotate (in float angle, in float cx, in float cy);
 void setSkewX (in float angle);
 void setSkewY (in float angle);
};

Definition group Transform Types

Defined constants
SVG_TRANSFORM_UNKNOWN The unit type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to attempt to
switch an existing value to this type.

SVG_TRANSFORM_MATRIX A "matrix(...)" transformation.

SVG_TRANSFORM_TRANSLATE A "translate(...)" transformation.

SVG_TRANSFORM_SCALE A "scale(...)" transformation.

SVG_TRANSFORM_ROTATE A "rotate(...)" transformation.

SVG_TRANSFORM_SKEWX A "skewX(...)" transformation.

SVG_TRANSFORM_SKEWY A "skewY(...)" transformation.
Attributes

readonly unsigned short type
The type of the value as specified by one of the constants specified above.

readonly SVGMatrix matrix
The matrix that represents this transformation.
For SVG_TRANSFORM_MATRIX, the matrix contains the a, b, c, d, e, f values supplied by the
user.
For SVG_TRANSFORM_TRANSLATE, e and f represent the translation amounts (a=1,b=0,c=0,
d=1).
For SVG_TRANSFORM_SCALE, a and d represent the scale amounts (b=0,c=0,e=0,f=0).
For SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix which will result in the given
transformation (e=0,f=0).

readonly float angle
A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and

http://www.w3.org/TR/SVG/coords.html (34 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

SVG_TRANSFORM_SKEWY. It holds the angle that was specified.
For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and
SVG_TRANSFORM_SCALE, angle will be zero.

Methods
setMatrix

Sets the transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining the new
transformation.
Parameters

in SVGMatrix matrix The new matrix for the transformation.
No Return Value
No Exceptions

setTranslate
Sets the transform type to SVG_TRANSFORM_TRANSLATE, with parameters tx and ty defining
the translation amounts.
Parameters

in float tx The translation amount in X.

in float ty The translation amount in Y.
No Return Value
No Exceptions

setScale
Sets the transform type to SVG_TRANSFORM_SCALE, with parameters sx and sy defining the
scale amounts.
Parameters

in float sx The scale factor in X.

in float sy The scale factor in Y.
No Return Value
No Exceptions

setRotate
Sets the transform type to SVG_TRANSFORM_ROTATE, with parameter angle defining the
rotation angle and parameters cx and cy defining the optional centre of rotation.
Parameters

in float angle The rotation angle.

in float cx The x coordinate of centre of rotation.

in float cy The y coordinate of centre of rotation.
No Return Value
No Exceptions

setSkewX
Sets the transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining the
amount of skew.
Parameters

in float angle The skew angle.
No Return Value
No Exceptions

setSkewY
Sets the transform type to SVG_TRANSFORM_SKEWY, with parameter angle defining the
amount of skew.
Parameters

in float angle The skew angle.
No Return Value
No Exceptions

Interface SVGTransformList

http://www.w3.org/TR/SVG/coords.html (35 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

This interface defines a list of SVGTransform objects.

The SVGTransformList and SVGTransform interfaces correspond to the various attributes which specify a
set of transformations, such as the transform attribute which is available for many of SVG's elements.

SVGTransformList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGTransformList {
 readonly attribute unsigned long numberOfItems;
 void clear ()
 raises(DOMException);
 SVGTransform initialize (in SVGTransform newItem)
 raises(DOMException, SVGException);
 SVGTransform getItem (in unsigned long index)
 raises(DOMException);
 SVGTransform insertItemBefore (in SVGTransform newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGTransform replaceItem (in SVGTransform newItem, in unsigned long index)
 raises(DOMException, SVGException);
 SVGTransform removeItem (in unsigned long index)
 raises(DOMException);
 SVGTransform appendItem (in SVGTransform newItem)
 raises(DOMException, SVGException);
 SVGTransform createSVGTransformFromMatrix (in SVGMatrix matrix);
 SVGTransform consolidate ();
};

Attributes

readonly unsigned long numberOfItems
The number of items in the list.

Methods
clear

Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters

in SVGTransform newItem The item which should become the only member of the list.
Return value

SVGTransform The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be
modified.

http://www.w3.org/TR/SVG/coords.html (36 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

getItem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.

Return value
SVGTransform The selected item.

Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater

than or equal to numberOfItems.
insertItemBefore

Inserts a new item into the list at the specified position. The first item is number 0. If newItem is
already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGTransform newItem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number 0.
If the index is equal to 0, then the new item is inserted at the
front of the list. If the index is greater than or equal to
numberOfItems, then the new item is appended to the end of
the list.

Return value
SVGTransform The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

replaceItem
Replaces an existing item in the list with a new item. If newItem is already in a list, it is removed
from its previous list before it is inserted into this list.
Parameters

in SVGTransform newItem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is
number 0.

Return value
SVGTransform The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfItems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

removeItem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is
number 0.

http://www.w3.org/TR/SVG/coords.html (37 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Return value
SVGTransform The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfItems.

appendItem
Inserts a new item at the end of the list. If newItem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in SVGTransform newItem The item which is to be inserted into the list. The first item is
number 0.

Return value
SVGTransform The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot be

modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newItem is the wrong
type of object for the given list.

createSVGTransformFromMatrix
Creates an SVGTransform object which is initialized to transform of type
SVG_TRANSFORM_MATRIX and whose values are the given matrix.
Parameters

in SVGMatrix matrix The matrix which defines the transformation.
Return value

SVGTransform The returned SVGTransform object.
No Exceptions

consolidate
Consolidates the list of separate SVGTransform objects by multiplying the equivalent
transformation matrices together to result in a list consisting of a single SVGTransform object of
type SVG_TRANSFORM_MATRIX.
No Parameters
Return value

SVGTransform The resulting SVGTransform object which becomes single item in the
list. If the list was empty, then a value of null is returned.

No Exceptions

Interface SVGAnimatedTransformList

Used for the various attributes which specify a set of transformations, such as the transform attribute which is
available for many of SVG's elements, and which can be animated.

IDL Definition

interface SVGAnimatedTransformList {
 readonly attribute SVGTransformList baseVal;
 readonly attribute SVGTransformList animVal;
};

http://www.w3.org/TR/SVG/coords.html (38 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Attributes

readonly SVGTransformList baseVal
The base value of the given attribute before applying any animations.

readonly SVGTransformList animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given attribute
or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGPreserveAspectRatio

The SVGPreserveAspectRatio interface corresponds to the preserveAspectRatio attribute, which is available
for some of SVG's elements.

IDL Definition

interface SVGPreserveAspectRatio {
 // Alignment Types
 const unsigned short SVG_PRESERVEASPECTRATIO_UNKNOWN = 0;
 const unsigned short SVG_PRESERVEASPECTRATIO_NONE = 1;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMIN = 2;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMIN = 3;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMIN = 4;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMID = 5;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMID = 6;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMID = 7;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMINYMAX = 8;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMIDYMAX = 9;
 const unsigned short SVG_PRESERVEASPECTRATIO_XMAXYMAX = 10;
 // Meet-or-slice Types
 const unsigned short SVG_MEETORSLICE_UNKNOWN = 0;
 const unsigned short SVG_MEETORSLICE_MEET = 1;
 const unsigned short SVG_MEETORSLICE_SLICE = 2;
 attribute unsigned short align;
 // raises DOMException on setting
 attribute unsigned short meetOrSlice;
 // raises DOMException on setting
};

Definition group Alignment Types

Defined constants
SVG_PRESERVEASPECTRATIO_UNKNOWN The enumeration was set to a value that is not

one of predefined types. It is invalid to attempt
to define a new value of this type or to attempt
to switch an existing value to this type.

SVG_PRESERVEASPECTRATIO_NONE Corresponds to value 'none' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMINYMIN Corresponds to value 'xMinYMin' for attribute
preserveAspectRatio.

http://www.w3.org/TR/SVG/coords.html (39 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

SVG_PRESERVEASPECTRATIO_XMIDYMIN Corresponds to value 'xMidYMin' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMIN Corresponds to value 'xMaxYMin' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMINYMID Corresponds to value 'xMinYMid' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMIDYMID Corresponds to value 'xMidYMid' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMID Corresponds to value 'xMaxYMid' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMINYMAX Corresponds to value 'xMinYMax' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMIDYMAX Corresponds to value 'xMidYMax' for attribute
preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMAX Corresponds to value 'xMaxYMax' for attribute
preserveAspectRatio.

Definition group Meet-or-slice Types
Defined constants

SVG_MEETORSLICE_UNKNOWN The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a new
value of this type or to attempt to switch an existing value
to this type.

SVG_MEETORSLICE_MEET Corresponds to value 'meet' for attribute
preserveAspectRatio.

SVG_MEETORSLICE_SLICE Corresponds to value 'slice' for attribute
preserveAspectRatio.

Attributes
unsigned short align

The type of the alignment value as specified by one of the constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

unsigned short meetOrSlice
The type of the meet-or-slice value as specified by one of the constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

Interface SVGAnimatedPreserveAspectRatio

Used for attributes of type SVGPreserveAspectRatio which can be animated.

IDL Definition

interface SVGAnimatedPreserveAspectRatio {
 readonly attribute SVGPreserveAspectRatio baseVal;
 readonly attribute SVGPreserveAspectRatio animVal;
};

http://www.w3.org/TR/SVG/coords.html (40 of 41)4/2/07 5:33 PM

Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114

Attributes

readonly SVGPreserveAspectRatio baseVal
The base value of the given attribute before applying any animations.

readonly SVGPreserveAspectRatio animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given attribute
or property is not currently being animated, contains the same value as 'baseVal'.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/coords.html (41 of 41)4/2/07 5:33 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Paths - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

8 Paths

Contents

● 8.1 Introduction
● 8.2 The 'path' element
● 8.3 Path Data

❍ 8.3.1 General information about path data
❍ 8.3.2 The "moveto" commands
❍ 8.3.3 The "closepath" command
❍ 8.3.4 The "lineto" commands
❍ 8.3.5 The curve commands
❍ 8.3.6 The cubic Bézier curve commands
❍ 8.3.7 The quadratic Bézier curve commands
❍ 8.3.8 The elliptical arc curve commands
❍ 8.3.9 The grammar for path data

● 8.4 Distance along a path
● 8.5 DOM interfaces

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any
combination of the three. (See Filling, Stroking and Paint Servers and Clipping, Masking and
Compositing.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current
point can be thought of as the location of the pen. The position of the pen can be changed, and the
outline of a shape (open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current
point), lineto (draw a straight line), curveto (draw a curve using a cubic Bézier), arc (elliptical or circular
arc) and closepath (close the current shape by drawing a line to the last moveto) elements. Compound
paths (i.e., a path with multiple subpaths) are possible to allow effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation

http://www.w3.org/TR/SVG/paths.html (1 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Paths - SVG 1.1 - 20030114

notes for SVG paths can be found in 'path' element implementation notes and Elliptical arc
implementation notes.

A path is defined in SVG using the 'path' element.

8.2 The 'path' element

<!ENTITY % SVG.path.extra.content "" >
<!ENTITY % SVG.path.element "INCLUDE" >
<![%SVG.path.element;[
<!ENTITY % SVG.path.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.path.extra.content;)*)"
>
<!ELEMENT %SVG.path.qname; %SVG.path.content; >

<!-- end of SVG.path.element -->]]>
<!ENTITY % SVG.path.attlist "INCLUDE" >
<![%SVG.path.attlist;[
<!ATTLIST %SVG.path.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Marker.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 d %PathData.datatype; #REQUIRED

 pathLength %Number.datatype; #IMPLIED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

d = "path data"
The definition of the outline of a shape. See Path data.
Animatable: yes. Path data animation is only possible when each path data specification within an
animation specification has exactly the same list of path data commands as the d attribute. If an
animation is specified and the list of path data commands is not the same, then the animation
specification is in error (see Error Processing). The animation engine interpolates each parameter
to each path data command separately based on the attributes to the given animation element.
Flags and booleans are interpolated as fractions between zero and one, with any non-zero value
considered to be a value of one/true.

pathLength = "<number>"

http://www.w3.org/TR/SVG/paths.html (2 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/implnote.html#PathElementImplementationNotes
http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Paths - SVG 1.1 - 20030114

The author's computation of the total length of the path, in user units. This value is used to
calibrate the user agent's own distance-along-a-path calculations with that of the author. The user
agent will scale all distance-along-a-path computations by the ratio of pathLength to the user
agent's own computed value for total path length. pathLength potentially affects calculations for
text on a path, motion animation and various stroke operations.
A negative value is an error (see Error processing).
Animatable: yes.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a 'path' element which contains a d="(path data)" attribute, where the d
attribute contains the moveto, line, curve (both cubic and quadratic Béziers), arc and closepath
instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M indicates a moveto, the L's
indicate lineto's, and the z indicates a closepath).

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4cm" height="4cm" viewBox="0 0 400 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <title>Example triangle01- simple example of a 'path'</title>
 <desc>A path that draws a triangle</desc>
 <rect x="1" y="1" width="398" height="398"
 fill="none" stroke="blue" />
 <path d="M 100 100 L 300 100 L 200 300 z"
 fill="red" stroke="blue" stroke-width="3" />
</svg>

Example
triangle01

View this example as SVG (SVG-enabled browsers only)

Path data can contain newline characters and thus can be broken up into multiple lines to improve
readability. Because of line length limitations with certain related tools, it is recommended that SVG
generators split long path data strings across multiple lines, with each line not exceeding 255 characters.
Also note that newline characters are only allowed at certain places within path data.

http://www.w3.org/TR/SVG/paths.html (3 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/paths/triangle01.svg

Paths - SVG 1.1 - 20030114

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since
many SVG files will be dominated by their path data. Some of the ways that SVG attempts to minimize
the size of path data are as follows:

● All instructions are expressed as one character (e.g., a moveto is expressed as an M).
● Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L

200 200" contains unnecessary spaces and could be expressed more compactly as "M100
100L200 200").

● The command letter can be eliminated on subsequent commands if the same command is used
multiple times in a row (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100 -200"
and use "M 100 200 L 200 100 -100 -200" instead).

● Relative versions of all commands are available (uppercase means absolute coordinates,
lowercase means relative coordinates).

● Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines
(absolute and relative).

● Alternate forms of curve are available to optimize the special cases where some of the control
points on the current segment can be determined automatically from the control points on the
previous segment.

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable
decimal point is a Unicode [UNICODE] FULL STOP (".") character (also referred to in Unicode as
PERIOD, dot and decimal point) and no other delimiter characters are allowed. (For example, the
following is an invalid numeric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative to the current point at the
start of the command.

In the tables below, the following notation is used:

● (): grouping of parameters
● +: 1 or more of the given parameter(s) is required

The following sections list the commands.

8.3.2 The "moveto" commands

The "moveto" commands (M or m) establish a new current point. The effect is as if the "pen" were lifted
and moved to a new location. A path data segment (if there is one) must begin with a "moveto"
command. Subsequent "moveto" commands (i.e., when the "moveto" is not the first command) represent
the start of a new subpath:

Command Name Parameters Description

M (absolute)
m (relative)

moveto (x y)+

Start a new sub-path at the given (x,y) coordinate. M
(uppercase) indicates that absolute coordinates will follow; m
(lowercase) indicates that relative coordinates will follow. If a
relative moveto (m) appears as the first element of the path,
then it is treated as a pair of absolute coordinates. If a moveto
is followed by multiple pairs of coordinates, the subsequent
pairs are treated as implicit lineto commands.

http://www.w3.org/TR/SVG/paths.html (4 of 29)4/2/07 5:35 PM

http://www.unicode.org/charts/PDF/U0000.pdf

Paths - SVG 1.1 - 20030114

8.3.3 The "closepath" command

The "closepath" (Z or z) ends the current subpath and causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath. If a "closepath" is followed immediately by a
"moveto", then the "moveto" identifies the start point of the next subpath. If a "closepath" is followed
immediately by any other command, then the next subpath starts at the same initial point as the current
subpath.

When a subpath ends in a "closepath," it differs in behavior from what happens when "manually" closing
a subpath via a "lineto" command in how 'stroke-linejoin' and 'stroke-linecap' are implemented. With
"closepath", the end of the final segment of the subpath is "joined" with the start of the initial segment of
the subpath using the current value of 'stroke-linejoin'. If you instead "manually" close the subpath via a
"lineto" command, the start of the first segment and the end of the last segment are not joined but
instead are each capped using the current value of 'stroke-linecap'. At the end of the command, the new
current point is set to the initial point of the current subpath.

Command Name Parameters Description

Z or
z

closepath (none)
Close the current subpath by drawing a straight line from the
current point to current subpath's initial point.

8.3.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command Name Parameters Description

L (absolute)
l (relative)

lineto (x y)+

Draw a line from the current point to the given (x,y)
coordinate which becomes the new current point. L
(uppercase) indicates that absolute coordinates will
follow; l (lowercase) indicates that relative
coordinates will follow. A number of coordinates pairs
may be specified to draw a polyline. At the end of the
command, the new current point is set to the final set
of coordinates provided.

H (absolute)
h (relative)

horizontal lineto x+

Draws a horizontal line from the current point (cpx,
cpy) to (x, cpy). H (uppercase) indicates that absolute
coordinates will follow; h (lowercase) indicates that
relative coordinates will follow. Multiple x values can
be provided (although usually this doesn't make
sense). At the end of the command, the new current
point becomes (x, cpy) for the final value of x.

V (absolute)
v (relative)

vertical lineto y+

Draws a vertical line from the current point (cpx, cpy)
to (cpx, y). V (uppercase) indicates that absolute
coordinates will follow; v (lowercase) indicates that
relative coordinates will follow. Multiple y values can
be provided (although usually this doesn't make
sense). At the end of the command, the new current
point becomes (cpx, y) for the final value of y.

http://www.w3.org/TR/SVG/paths.html (5 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

8.3.5 The curve commands

These three groups of commands draw curves:

● Cubic Bézier commands (C, c, S and s). A cubic Bézier segment is defined by a start point, an
end point, and two control points.

● Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment is defined by a start
point, an end point, and one control point.

● Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

8.3.6 The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command Name Parameters Description

C (absolute)
c (relative)

curveto (x1 y1 x2 y2 x y)+

Draws a cubic Bézier curve from the
current point to (x,y) using (x1,y1) as
the control point at the beginning of
the curve and (x2,y2) as the control
point at the end of the curve. C
(uppercase) indicates that absolute
coordinates will follow; c (lowercase)
indicates that relative coordinates will
follow. Multiple sets of coordinates
may be specified to draw a
polybézier. At the end of the
command, the new current point
becomes the final (x,y) coordinate
pair used in the polybézier.

S (absolute)
s (relative)

shorthand/smooth curveto (x2 y2 x y)+

Draws a cubic Bézier curve from the
current point to (x,y). The first control
point is assumed to be the reflection
of the second control point on the
previous command relative to the
current point. (If there is no previous
command or if the previous command
was not an C, c, S or s, assume the
first control point is coincident with the
current point.) (x2,y2) is the second
control point (i.e., the control point at
the end of the curve). S (uppercase)
indicates that absolute coordinates
will follow; s (lowercase) indicates
that relative coordinates will follow.
Multiple sets of coordinates may be
specified to draw a polybézier. At the
end of the command, the new current
point becomes the final (x,y)
coordinate pair used in the polybézier.

http://www.w3.org/TR/SVG/paths.html (6 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

Example cubic01 shows some simple uses of cubic Bézier commands within a path. The example uses
an internal CSS style sheet to assign styling properties. Note that the control point for the "S" command
is computed automatically as the reflection of the control point for the previous "C" command relative to
the start point of the "S" command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="4cm" viewBox="0 0 500 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <title>Example cubic01- cubic Bézier commands in path data</title>
 <desc>Picture showing a simple example of path data
 using both a "C" and an "S" command,
 along with annotations showing the control points
 and end points</desc>
 <style type="text/css"><![CDATA[
 .Border { fill:none; stroke:blue; stroke-width:1 }
 .Connect { fill:none; stroke:#888888; stroke-width:2 }
 .SamplePath { fill:none; stroke:red; stroke-width:5 }
 .EndPoint { fill:none; stroke:#888888; stroke-width:2 }
 .CtlPoint { fill:#888888; stroke:none }
 .AutoCtlPoint { fill:none; stroke:blue; stroke-width:4 }
 .Label { font-size:22; font-family:Verdana }
]]></style>
 <rect class="Border" x="1" y="1" width="498" height="398" />
 <polyline class="Connect" points="100,200 100,100" />
 <polyline class="Connect" points="250,100 250,200" />
 <polyline class="Connect" points="250,200 250,300" />
 <polyline class="Connect" points="400,300 400,200" />
 <path class="SamplePath" d="M100,200 C100,100 250,100 250,200
 S400,300 400,200" />
 <circle class="EndPoint" cx="100" cy="200" r="10" />
 <circle class="EndPoint" cx="250" cy="200" r="10" />
 <circle class="EndPoint" cx="400" cy="200" r="10" />
 <circle class="CtlPoint" cx="100" cy="100" r="10" />
 <circle class="CtlPoint" cx="250" cy="100" r="10" />
 <circle class="CtlPoint" cx="400" cy="300" r="10" />
 <circle class="AutoCtlPoint" cx="250" cy="300" r="9" />
 <text class="Label" x="25" y="70">M100,200 C100,100 250,100 250,200</text>
 <text class="Label" x="325" y="350"
 style="text-anchor:middle">S400,300 400,200</text>
</svg>

Example
cubic01

http://www.w3.org/TR/SVG/paths.html (7 of 29)4/2/07 5:35 PM

http://www.w3.org/2000/svg

Paths - SVG 1.1 - 20030114

View this example as SVG (SVG- and CSS-enabled browsers only)

The following picture shows some how cubic Bézier curves change their shape depending on the
position of the control points. The first five examples illustrate a single cubic Bézier path segment. The
example at the lower right shows a "C" command followed by an "S" command.

View this example as SVG (SVG-enabled browsers only)

8.3.7 The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command Name Parameters Description

Q (absolute)
q (relative)

quadratic Bézier curveto (x1 y1 x y)+

Draws a quadratic Bézier curve
from the current point to (x,y) using
(x1,y1) as the control point. Q
(uppercase) indicates that absolute
coordinates will follow; q
(lowercase) indicates that relative
coordinates will follow. Multiple sets
of coordinates may be specified to
draw a polybézier. At the end of the
command, the new current point
becomes the final (x,y) coordinate
pair used in the polybézier.

http://www.w3.org/TR/SVG/paths.html (8 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/images/paths/cubic01.svg
http://www.w3.org/TR/SVG/images/paths/cubic02.svg

Paths - SVG 1.1 - 20030114

T (absolute)
t (relative)

Shorthand/smooth quadratic
Bézier curveto

(x y)+

Draws a quadratic Bézier curve
from the current point to (x,y). The
control point is assumed to be the
reflection of the control point on the
previous command relative to the
current point. (If there is no previous
command or if the previous
command was not a Q, q, T or t,
assume the control point is
coincident with the current point.) T
(uppercase) indicates that absolute
coordinates will follow; t (lowercase)
indicates that relative coordinates
will follow. At the end of the
command, the new current point
becomes the final (x,y) coordinate
pair used in the polybézier.

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the
control point for the "T" command is computed automatically as the reflection of the control point for the
previous "Q" command relative to the start point of the "T" command.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="6cm" viewBox="0 0 1200 600"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <title>Example quad01 - quadratic Bezier commands in path data</title>
 <desc>Picture showing a "Q" a "T" command,
 along with annotations showing the control points
 and end points</desc>
 <rect x="1" y="1" width="1198" height="598"
 fill="none" stroke="blue" stroke-width="1" />
 <path d="M200,300 Q400,50 600,300 T1000,300"
 fill="none" stroke="red" stroke-width="5" />
 <!-- End points -->
 <g fill="black" >
 <circle cx="200" cy="300" r="10"/>
 <circle cx="600" cy="300" r="10"/>
 <circle cx="1000" cy="300" r="10"/>
 </g>
 <!-- Control points and lines from end points to control points -->
 <g fill="#888888" >
 <circle cx="400" cy="50" r="10"/>
 <circle cx="800" cy="550" r="10"/>
 </g>
 <path d="M200,300 L400,50 L600,300
 L800,550 L1000,300"
 fill="none" stroke="#888888" stroke-width="2" />
</svg>

http://www.w3.org/TR/SVG/paths.html (9 of 29)4/2/07 5:35 PM

http://www.w3.org/2000/svg

Paths - SVG 1.1 - 20030114

Example quad01

View this example as SVG (SVG-enabled browsers only)

8.3.8 The elliptical arc curve commands

The elliptical arc commands are as follows:

Command Name Parameters Description

A (absolute)
a (relative)

elliptical arc
(rx ry x-axis-rotation large-arc-flag
sweep-flag x y)+

Draws an elliptical arc from the
current point to (x, y). The size and
orientation of the ellipse are defined
by two radii (rx, ry) and an x-axis-
rotation, which indicates how the
ellipse as a whole is rotated relative
to the current coordinate system.
The center (cx, cy) of the ellipse is
calculated automatically to satisfy
the constraints imposed by the
other parameters. large-arc-flag
and sweep-flag contribute to the
automatic calculations and help
determine how the arc is drawn.

Example arcs01 shows some simple uses of arc commands within a path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="5.25cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <title>Example arcs01 - arc commands in path data</title>
 <desc>Picture of a pie chart with two pie wedges and
 a picture of a line with arc blips</desc>
 <rect x="1" y="1" width="1198" height="398"

http://www.w3.org/TR/SVG/paths.html (10 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/images/paths/quad01.svg
http://www.w3.org/2000/svg

Paths - SVG 1.1 - 20030114

 fill="none" stroke="blue" stroke-width="1" />
 <path d="M300,200 h-150 a150,150 0 1,0 150,-150 z"
 fill="red" stroke="blue" stroke-width="5" />
 <path d="M275,175 v-150 a150,150 0 0,0 -150,150 z"
 fill="yellow" stroke="blue" stroke-width="5" />
 <path d="M600,350 l 50,-25
 a25,25 -30 0,1 50,-25 l 50,-25
 a25,50 -30 0,1 50,-25 l 50,-25
 a25,75 -30 0,1 50,-25 l 50,-25
 a25,100 -30 0,1 50,-25 l 50,-25"
 fill="none" stroke="red" stroke-width="5" />
</svg>

Example arcs01

View this example as SVG (SVG-enabled browsers only)

The elliptical arc command draws a section of an ellipse which meets the following constraints:

● the arc starts at the current point
● the arc ends at point (x, y)
● the ellipse has the two radii (rx, ry)
● the x-axis of the ellipse is rotated by x-axis-rotation relative to the x-axis of the current coordinate

system.

For most situations, there are actually four different arcs (two different ellipses, each with two different
arc sweeps) that satisfy these constraints. large-arc-flag and sweep-flag indicate which one of the four
arcs are drawn, as follows:

● Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180
degrees (the "large-arc"), and two will represent an arc sweep of less than or equal to 180 degrees
(the "small-arc"). If large-arc-flag is '1', then one of the two larger arc sweeps will be chosen;
otherwise, if large-arc-flag is '0', one of the smaller arc sweeps will be chosen,

● If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction (i.e., the ellipse
formula x=cx+rx*cos(theta) and y=cy+ry*sin(theta) is evaluated such that theta starts at an angle
corresponding to the current point and increases positively until the arc reaches (x,y)). A value of 0
causes the arc to be drawn in a "negative-angle" direction (i.e., theta starts at an angle value
corresponding to the current point and decreases until the arc reaches (x,y)).

The following illustrates the four combinations of large-arc-flag and sweep-flag and the four different

http://www.w3.org/TR/SVG/paths.html (11 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/images/paths/arcs01.svg

Paths - SVG 1.1 - 20030114

arcs that will be drawn based on the values of these flags. For each case, the following path data
command was used:

<path d="M 125,75 a100,50 0 ?,? 100,50"
 style="fill:none; stroke:red; stroke-width:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

View this example as SVG (SVG-enabled browsers only)

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical
arc commands.

8.3.9 The grammar for path data

The following notation is used in the Backus-Naur Form (BNF) description of the grammar for path data:

● *: 0 or more
● +: 1 or more
● ?: 0 or 1
● (): grouping
● |: separates alternatives
● double quotes surround literals

The following is the BNF for SVG paths.

svg-path:
 wsp* moveto-drawto-command-groups? wsp*
moveto-drawto-command-groups:
 moveto-drawto-command-group
 | moveto-drawto-command-group wsp* moveto-drawto-command-groups
moveto-drawto-command-group:
 moveto wsp* drawto-commands?
drawto-commands:
 drawto-command
 | drawto-command wsp* drawto-commands
drawto-command:
 closepath
 | lineto
 | horizontal-lineto
 | vertical-lineto

http://www.w3.org/TR/SVG/paths.html (12 of 29)4/2/07 5:35 PM

http://www.w3.org/TR/SVG/images/paths/arcs02.svg
http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes

Paths - SVG 1.1 - 20030114

 | curveto
 | smooth-curveto
 | quadratic-bezier-curveto
 | smooth-quadratic-bezier-curveto
 | elliptical-arc
moveto:
 ("M" | "m") wsp* moveto-argument-sequence
moveto-argument-sequence:
 coordinate-pair
 | coordinate-pair comma-wsp? lineto-argument-sequence
closepath:
 ("Z" | "z")
lineto:
 ("L" | "l") wsp* lineto-argument-sequence
lineto-argument-sequence:
 coordinate-pair
 | coordinate-pair comma-wsp? lineto-argument-sequence
horizontal-lineto:
 ("H" | "h") wsp* horizontal-lineto-argument-sequence
horizontal-lineto-argument-sequence:
 coordinate
 | coordinate comma-wsp? horizontal-lineto-argument-sequence
vertical-lineto:
 ("V" | "v") wsp* vertical-lineto-argument-sequence
vertical-lineto-argument-sequence:
 coordinate
 | coordinate comma-wsp? vertical-lineto-argument-sequence
curveto:
 ("C" | "c") wsp* curveto-argument-sequence
curveto-argument-sequence:
 curveto-argument
 | curveto-argument comma-wsp? curveto-argument-sequence
curveto-argument:
 coordinate-pair comma-wsp? coordinate-pair comma-wsp? coordinate-pair
smooth-curveto:
 ("S" | "s") wsp* smooth-curveto-argument-sequence
smooth-curveto-argument-sequence:
 smooth-curveto-argument
 | smooth-curveto-argument comma-wsp? smooth-curveto-argument-sequence
smooth-curveto-argument:
 coordinate-pair comma-wsp? coordinate-pair
quadratic-bezier-curveto:
 ("Q" | "q") wsp* quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument-sequence:
 quadratic-bezier-curveto-argument
 | quadratic-bezier-curveto-argument comma-wsp?
 quadratic-bezier-curveto-argument-sequence
quadratic-bezier-curveto-argument:
 coordinate-pair comma-wsp? coordinate-pair
smooth-quadratic-bezier-curveto:
 ("T" | "t") wsp* smooth-quadratic-bezier-curveto-argument-sequence
smooth-quadratic-bezier-curveto-argument-sequence:
 coordinate-pair
 | coordinate-pair comma-wsp? smooth-quadratic-bezier-curveto-argument-sequence
elliptical-arc:
 ("A" | "a") wsp* elliptical-arc-argument-sequence
elliptical-arc-argument-sequence:
 elliptical-arc-argument
 | elliptical-arc-argument comma-wsp? elliptical-arc-argument-sequence
elliptical-arc-argument:

http://www.w3.org/TR/SVG/paths.html (13 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

 nonnegative-number comma-wsp? nonnegative-number comma-wsp?
 number comma-wsp flag comma-wsp flag comma-wsp coordinate-pair
coordinate-pair:
 coordinate comma-wsp? coordinate
coordinate:
 number
nonnegative-number:
 integer-constant
 | floating-point-constant
number:
 sign? integer-constant
 | sign? floating-point-constant
flag:
 "0" | "1"
comma-wsp:
 (wsp+ comma? wsp*) | (comma wsp*)
comma:
 ","
integer-constant:
 digit-sequence
floating-point-constant:
 fractional-constant exponent?
 | digit-sequence exponent
fractional-constant:
 digit-sequence? "." digit-sequence
 | digit-sequence "."
exponent:
 ("e" | "E") sign? digit-sequence
sign:
 "+" | "-"
digit-sequence:
 digit
 | digit digit-sequence
digit:
 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
wsp:
 (#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at
the point when a character is encountered which no longer satisfies the production. Thus, in the string "M
100-200", the first coordinate for the "moveto" consumes the characters "100" and stops upon
encountering the minus sign because the minus sign cannot follow a digit in the production of a
"coordinate". The result is that the first coordinate will be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto" consumes the characters "0.6" and
stops upon encountering the second decimal point because the production of a "coordinate" only allows
one decimal point. The result is that the first coordinate will be "0.6" and the second coordinate will be
".5".

Note that the BNF allows the path 'd' attribute to be empty. This is not an error, instead it disables
rendering of the path.

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require
that the user agent compute the distance along the geometry of a graphics element, such as a 'path'.

http://www.w3.org/TR/SVG/paths.html (14 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and
require substantial computation. It is recommended that authoring products and user agents employ
algorithms that produce as precise results as possible; however, to accommodate implementation
differences and to help distance calculations produce results that approximate author intent, the
pathLength attribute can be used to provide the author's computation of the total length of the path so
that the user agent can scale distance-along-a-path computations by the ratio of pathLength to the user
agent's own computed value for total path length.

A "moveto" operation within a 'path' element is defined to have zero length. Only the various "lineto",
"curveto" and "arcto" commands contribute to path length calculations.

8.5 DOM interfaces

The following interfaces are defined below: SVGPathSeg, SVGPathSegClosePath,
SVGPathSegMovetoAbs, SVGPathSegMovetoRel, SVGPathSegLinetoAbs, SVGPathSegLinetoRel,
SVGPathSegCurvetoCubicAbs, SVGPathSegCurvetoCubicRel, SVGPathSegCurvetoQuadraticAbs,
SVGPathSegCurvetoQuadraticRel, SVGPathSegArcAbs, SVGPathSegArcRel,
SVGPathSegLinetoHorizontalAbs, SVGPathSegLinetoHorizontalRel, SVGPathSegLinetoVerticalAbs,
SVGPathSegLinetoVerticalRel, SVGPathSegCurvetoCubicSmoothAbs,
SVGPathSegCurvetoCubicSmoothRel, SVGPathSegCurvetoQuadraticSmoothAbs,
SVGPathSegCurvetoQuadraticSmoothRel, SVGPathSegList, SVGAnimatedPathData, SVGPathElement.

Interface SVGPathSeg

The SVGPathSeg interface is a base interface that corresponds to a single command within a path data
specification.

IDL Definition

interface SVGPathSeg {
 // Path Segment Types
 const unsigned short PATHSEG_UNKNOWN = 0;
 const unsigned short PATHSEG_CLOSEPATH = 1;
 const unsigned short PATHSEG_MOVETO_ABS = 2;
 const unsigned short PATHSEG_MOVETO_REL = 3;
 const unsigned short PATHSEG_LINETO_ABS = 4;
 const unsigned short PATHSEG_LINETO_REL = 5;
 const unsigned short PATHSEG_CURVETO_CUBIC_ABS = 6;
 const unsigned short PATHSEG_CURVETO_CUBIC_REL = 7;
 const unsigned short PATHSEG_CURVETO_QUADRATIC_ABS = 8;
 const unsigned short PATHSEG_CURVETO_QUADRATIC_REL = 9;
 const unsigned short PATHSEG_ARC_ABS = 10;
 const unsigned short PATHSEG_ARC_REL = 11;
 const unsigned short PATHSEG_LINETO_HORIZONTAL_ABS = 12;
 const unsigned short PATHSEG_LINETO_HORIZONTAL_REL = 13;
 const unsigned short PATHSEG_LINETO_VERTICAL_ABS = 14;
 const unsigned short PATHSEG_LINETO_VERTICAL_REL = 15;
 const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_ABS = 16;
 const unsigned short PATHSEG_CURVETO_CUBIC_SMOOTH_REL = 17;
 const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS = 18;
 const unsigned short PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL = 19;

http://www.w3.org/TR/SVG/paths.html (15 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

 readonly attribute unsigned short pathSegType;
 readonly attribute DOMString pathSegTypeAsLetter;
};

Definition group Path Segment Types

Defined constants
PATHSEG_UNKNOWN The unit type is not one of

predefined types. It is invalid to
attempt to define a new value of
this type or to attempt to switch an
existing value to this type.

PATHSEG_CLOSEPATH Corresponds to a "closepath" (z)
path data command.

PATHSEG_MOVETO_ABS Corresponds to an "absolute
moveto" (M) path data command.

PATHSEG_MOVETO_REL Corresponds to a "relative
moveto" (m) path data command.

PATHSEG_LINETO_ABS Corresponds to an "absolute
lineto" (L) path data command.

PATHSEG_LINETO_REL Corresponds to a "relative
lineto" (l) path data command.

PATHSEG_CURVETO_CUBIC_ABS Corresponds to an "absolute cubic
Bézier curveto" (C) path data
command.

PATHSEG_CURVETO_CUBIC_REL Corresponds to a "relative cubic
Bézier curveto" (c) path data
command.

PATHSEG_CURVETO_QUADRATIC_ABS Corresponds to an "absolute
quadratic Bézier curveto" (Q) path
data command.

PATHSEG_CURVETO_QUADRATIC_REL Corresponds to a "relative
quadratic Bézier curveto" (q) path
data command.

PATHSEG_ARC_ABS Corresponds to an "absolute
arcto" (A) path data command.

PATHSEG_ARC_REL Corresponds to a "relative
arcto" (a) path data command.

PATHSEG_LINETO_HORIZONTAL_ABS Corresponds to an "absolute
horizontal lineto" (H) path data
command.

PATHSEG_LINETO_HORIZONTAL_REL Corresponds to a "relative
horizontal lineto" (h) path data
command.

PATHSEG_LINETO_VERTICAL_ABS Corresponds to an "absolute
vertical lineto" (V) path data
command.

PATHSEG_LINETO_VERTICAL_REL Corresponds to a "relative vertical
lineto" (v) path data command.

http://www.w3.org/TR/SVG/paths.html (16 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

PATHSEG_CURVETO_CUBIC_SMOOTH_ABS Corresponds to an "absolute
smooth cubic curveto" (S) path
data command.

PATHSEG_CURVETO_CUBIC_SMOOTH_REL Corresponds to a "relative smooth
cubic curveto" (s) path data
command.

PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS Corresponds to an "absolute
smooth quadratic curveto" (T) path
data command.

PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL Corresponds to a "relative smooth
quadratic curveto" (t) path data
command.

Attributes
readonly unsigned short pathSegType

The type of the path segment as specified by one of the constants specified above.
readonly DOMString pathSegTypeAsLetter

The type of the path segment, specified by the corresponding one character command
name.

Interface SVGPathSegClosePath

The SVGPathSegClosePath interface corresponds to a "closepath" (z) path data command.

IDL Definition

interface SVGPathSegClosePath : SVGPathSeg {};

Interface SVGPathSegMovetoAbs

The SVGPathSegMovetoAbs interface corresponds to an "absolute moveto" (M) path data command.

IDL Definition

interface SVGPathSegMovetoAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
};

Attributes

http://www.w3.org/TR/SVG/paths.html (17 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegMovetoRel

The SVGPathSegMovetoRel interface corresponds to an "relative moveto" (m) path data command.

IDL Definition

interface SVGPathSegMovetoRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoAbs

The SVGPathSegLinetoAbs interface corresponds to an "absolute lineto" (L) path data command.

IDL Definition

interface SVGPathSegLinetoAbs : SVGPathSeg {
 attribute float x;

http://www.w3.org/TR/SVG/paths.html (18 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoRel

The SVGPathSegLinetoRel interface corresponds to an "relative lineto" (l) path data command.

IDL Definition

interface SVGPathSegLinetoRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicAbs

http://www.w3.org/TR/SVG/paths.html (19 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

The SVGPathSegCurvetoCubicAbs interface corresponds to an "absolute cubic Bézier curveto" (C)
path data command.

IDL Definition

interface SVGPathSegCurvetoCubicAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float x1;
 // raises DOMException on setting
 attribute float y1;
 // raises DOMException on setting
 attribute float x2;
 // raises DOMException on setting
 attribute float y2;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x1
The absolute X coordinate for the first control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y1
The absolute Y coordinate for the first control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x2
The absolute X coordinate for the second control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y2
The absolute Y coordinate for the second control point.

http://www.w3.org/TR/SVG/paths.html (20 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to

change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicRel

The SVGPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto" (c) path
data command.

IDL Definition

interface SVGPathSegCurvetoCubicRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float x1;
 // raises DOMException on setting
 attribute float y1;
 // raises DOMException on setting
 attribute float x2;
 // raises DOMException on setting
 attribute float y2;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x1
The relative X coordinate for the first control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y1
The relative Y coordinate for the first control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

http://www.w3.org/TR/SVG/paths.html (21 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

float x2
The relative X coordinate for the second control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y2
The relative Y coordinate for the second control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticAbs

The SVGPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier
curveto" (Q) path data command.

IDL Definition

interface SVGPathSegCurvetoQuadraticAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float x1;
 // raises DOMException on setting
 attribute float y1;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x1
The absolute X coordinate for the control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y1
The absolute Y coordinate for the control point.

http://www.w3.org/TR/SVG/paths.html (22 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to

change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticRel

The SVGPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier
curveto" (q) path data command.

IDL Definition

interface SVGPathSegCurvetoQuadraticRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float x1;
 // raises DOMException on setting
 attribute float y1;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x1
The relative X coordinate for the control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y1
The relative Y coordinate for the control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegArcAbs

http://www.w3.org/TR/SVG/paths.html (23 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

The SVGPathSegArcAbs interface corresponds to an "absolute arcto" (A) path data command.

IDL Definition

interface SVGPathSegArcAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float r1;
 // raises DOMException on setting
 attribute float r2;
 // raises DOMException on setting
 attribute float angle;
 // raises DOMException on setting
 attribute boolean largeArcFlag;
 // raises DOMException on setting
 attribute boolean sweepFlag;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float r1
The x-axis radius for the ellipse (i.e., r1).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float r2
The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user
coordinate system.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

boolean largeArcFlag

http://www.w3.org/TR/SVG/paths.html (24 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

The value of the large-arc-flag parameter.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto" (a) path data command.

IDL Definition

interface SVGPathSegArcRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float r1;
 // raises DOMException on setting
 attribute float r2;
 // raises DOMException on setting
 attribute float angle;
 // raises DOMException on setting
 attribute boolean largeArcFlag;
 // raises DOMException on setting
 attribute boolean sweepFlag;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float r1
The x-axis radius for the ellipse (i.e., r1).
Exceptions on setting

http://www.w3.org/TR/SVG/paths.html (25 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float r2
The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user
coordinate system.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

boolean largeArcFlag
The value of the large-arc-flag parameter.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoHorizontalAbs

The SVGPathSegLinetoHorizontalAbs interface corresponds to an "absolute horizontal lineto" (H) path
data command.

IDL Definition

interface SVGPathSegLinetoHorizontalAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoHorizontalRel

http://www.w3.org/TR/SVG/paths.html (26 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

The SVGPathSegLinetoHorizontalRel interface corresponds to a "relative horizontal lineto" (h) path
data command.

IDL Definition

interface SVGPathSegLinetoHorizontalRel : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
};

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoVerticalAbs

The SVGPathSegLinetoVerticalAbs interface corresponds to an "absolute vertical lineto" (V) path data
command.

IDL Definition

interface SVGPathSegLinetoVerticalAbs : SVGPathSeg {
 attribute float y;
 // raises DOMException on setting
};

Attributes

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a "relative vertical lineto" (v) path data
command.

http://www.w3.org/TR/SVG/paths.html (27 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

IDL Definition

interface SVGPathSegLinetoVerticalRel : SVGPathSeg {
 attribute float y;
 // raises DOMException on setting
};

Attributes

float y
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicSmoothAbs

The SVGPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic
curveto" (S) path data command.

IDL Definition

interface SVGPathSegCurvetoCubicSmoothAbs : SVGPathSeg {
 attribute float x;
 // raises DOMException on setting
 attribute float y;
 // raises DOMException on setting
 attribute float x2;
 // raises DOMException on setting
 attribute float y2;
 // raises DOMException on setting
};

Attributes

float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float x2

http://www.w3.org/TR/SVG/paths.html (28 of 29)4/2/07 5:35 PM

Paths - SVG 1.1 - 20030114

The absolute X coordinate for the second control point.
Exceptions on setting

<span class="dom-exception-t

http://www.w3.org/TR/SVG/paths.html (29 of 29)4/2/07 5:35 PM

Basic Shapes - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

9 Basic Shapes

Contents

● 9.1 Introduction
● 9.2 The 'rect' element
● 9.3 The 'circle' element
● 9.4 The 'ellipse' element
● 9.5 The 'line' element
● 9.6 The 'polyline' element
● 9.7 The 'polygon' element
● 9.8 The grammar for points specifications in 'polyline' and 'polygon' elements
● 9.9 Shape Module
● 9.10 DOM interfaces

9.1 Introduction

SVG contains the following set of basic shape elements:

● rectangles (rectangle, including optional rounded corners)
● circles
● ellipses
● lines
● polylines
● polygons

Mathematically, these shape elements are equivalent to a 'path' element that would construct the
same shape. The basic shapes may be stroked, filled and used as clip paths. All of the properties
available for 'path' elements also apply to the basic shapes.

9.2 The 'rect' element

The 'rect' element defines a rectangle which is axis-aligned with the current user coordinate system.

http://www.w3.org/TR/SVG/shapes.html (1 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Basic Shapes - SVG 1.1 - 20030114

Rounded rectangles can be achieved by setting appropriate values for attributes rx and ry.

<!ENTITY % SVG.rect.extra.content "" >
<!ENTITY % SVG.rect.element "INCLUDE" >
<![%SVG.rect.element;[
<!ENTITY % SVG.rect.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.rect.extra.content;)*)"
>
<!ELEMENT %SVG.rect.qname; %SVG.rect.content; >

<!-- end of SVG.rect.element -->]]>
<!ENTITY % SVG.rect.attlist "INCLUDE" >
<![%SVG.rect.attlist;[
<!ATTLIST %SVG.rect.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

 width %Length.datatype; #REQUIRED

 height %Length.datatype; #REQUIRED

 rx %Length.datatype; #IMPLIED

 ry %Length.datatype; #IMPLIED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

x = "<coordinate>"
The x-axis coordinate of the side of the rectangle which has the smaller x-axis coordinate
value in the current user coordinate system.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of the side of the rectangle which has the smaller y-axis coordinate
value in the current user coordinate system.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

width = "<length>"
The width of the rectangle.

http://www.w3.org/TR/SVG/shapes.html (2 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

height = "<length>"
The height of the rectangle.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

rx = "<length>"
For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the
rectangle.
A negative value is an error (see Error processing).
See the notes below about what happens if the attribute is not specified.
Animatable: yes.

ry = "<length>"
For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the
rectangle.
A negative value is an error (see Error processing).
See the notes below about what happens if the attribute is not specified.
Animatable: yes.

If a properly specified value is provided for rx but not for ry, then the user agent processes the 'rect'
element with the effective value for ry as equal to rx. If a properly specified value is provided for ry
but not for rx, then the user agent processes the 'rect' element with the effective value for rx as
equal to ry. If neither rx nor ry has a properly specified value, then the user agent processes the
'rect' element as if no rounding had been specified, resulting in square corners. If rx is greater than
half of the width of the rectangle, then the user agent processes the 'rect' element with the effective
value for rx as half of the width of the rectangle. If ry is greater than half of the height of the
rectangle, then the user agent processes the 'rect' element with the effective value for ry as half of
the height of the rectangle.

Mathematically, a 'rect' element can be mapped to an equivalent 'path' element as follows: (Note: all
coordinate and length values are first converted into user space coordinates according to Units.)

● perform an absolute moveto operation to location (x+rx,y), where x is the value of the 'rect'
element's x attribute converted to user space, rx is the effective value of the rx attribute
converted to user space and y is the value of the y attribute converted to user space

● perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the
'rect' element's width attribute converted to user space

● perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective
values for the rx and ry attributes on the 'rect' element converted to user space are used as
the rx and ry attributes on the elliptical arc command, respectively, the x-axis-rotation is set to
zero, the large-arc-flag is set to zero, and the sweep-flag is set to one

● perform a absolute vertical lineto to location (x+width,y+height-ry), where height is the 'rect'
element's height attribute converted to user space

● perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height)
● perform an absolute horizontal lineto to location (x+rx,y+height)
● perform an absolute elliptical arc operation to coordinate (x,y+height-ry)

http://www.w3.org/TR/SVG/shapes.html (3 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Basic Shapes - SVG 1.1 - 20030114

● perform an absolute absolute vertical lineto to location (x,y+ry)
● perform an absolute elliptical arc operation to coordinate (x+rx,y)

Example rect01 shows a rectangle with sharp corners. The 'rect' element is filled with yellow and
stroked with navy.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example rect01 - rectangle with sharp corners</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2"/>
 <rect x="400" y="100" width="400" height="200"
 fill="yellow" stroke="navy" stroke-width="10" />
</svg>

Example rect01

View this example as SVG (SVG-enabled browsers only)

Example rect02 shows two rounded rectangles. The rx specifies how to round the corners of the
rectangles. Note that since no value has been specified for the ry attribute, it will be assigned the
same value as the rx attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example rect02 - rounded rectangles</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2"/>
 <rect x="100" y="100" width="400" height="200" rx="50"
 fill="green" />
 <g transform="translate(700 210) rotate(-30)">
 <rect x="0" y="0" width="400" height="200" rx="50"
 fill="none" stroke="purple" stroke-width="30" />

http://www.w3.org/TR/SVG/shapes.html (4 of 21)4/2/07 5:36 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/shapes/rect01.svg
http://www.w3.org/2000/svg

Basic Shapes - SVG 1.1 - 20030114

 </g>
</svg>

Example rect02

View this example as SVG (SVG-enabled browsers only)

9.3 The 'circle' element

The 'circle' element defines a circle based on a center point and a radius.

<!ENTITY % SVG.circle.extra.content "" >
<!ENTITY % SVG.circle.element "INCLUDE" >
<![%SVG.circle.element;[
<!ENTITY % SVG.circle.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.circle.extra.content;)*)"
>
<!ELEMENT %SVG.circle.qname; %SVG.circle.content; >

<!-- end of SVG.circle.element -->]]>
<!ENTITY % SVG.circle.attlist "INCLUDE" >
<![%SVG.circle.attlist;[
<!ATTLIST %SVG.circle.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 cx %Coordinate.datatype; #IMPLIED

 cy %Coordinate.datatype; #IMPLIED

 r %Length.datatype; #REQUIRED

 transform %TransformList.datatype; #IMPLIED

http://www.w3.org/TR/SVG/shapes.html (5 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/rect02.svg

Basic Shapes - SVG 1.1 - 20030114

>

Attribute definitions:

cx = "<coordinate>"
The x-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

r = "<length>"
The radius of the circle.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

The arc of a 'circle' element begins at the "3 o'clock" point on the radius and progresses towards the
"9 o'clock" point. The starting point and direction of the arc are affected by the user space transform
in the same manner as the geometry of the element.

Example circle01 consists of a 'circle' element that is filled with red and stroked with blue.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example circle01 - circle filled with red and stroked with blue</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2"/>
 <circle cx="600" cy="200" r="100"
 fill="red" stroke="blue" stroke-width="10" />
</svg>

Example circle01

http://www.w3.org/TR/SVG/shapes.html (6 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Basic Shapes - SVG 1.1 - 20030114

View this example as SVG (SVG-enabled browsers only)

9.4 The 'ellipse' element

The 'ellipse' element defines an ellipse which is axis-aligned with the current user coordinate system
based on a center point and two radii.

<!ENTITY % SVG.ellipse.extra.content "" >
<!ENTITY % SVG.ellipse.element "INCLUDE" >
<![%SVG.ellipse.element;[
<!ENTITY % SVG.ellipse.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.ellipse.extra.content;)*)"
>
<!ELEMENT %SVG.ellipse.qname; %SVG.ellipse.content; >

<!-- end of SVG.ellipse.element -->]]>
<!ENTITY % SVG.ellipse.attlist "INCLUDE" >
<![%SVG.ellipse.attlist;[
<!ATTLIST %SVG.ellipse.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 cx %Coordinate.datatype; #IMPLIED

 cy %Coordinate.datatype; #IMPLIED

 rx %Length.datatype; #REQUIRED

 ry %Length.datatype; #REQUIRED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

cx = "<coordinate>"
The x-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

cy = "<coordinate>"
The y-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.

http://www.w3.org/TR/SVG/shapes.html (7 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/circle01.svg

Basic Shapes - SVG 1.1 - 20030114

Animatable: yes.
rx = "<length>"

The x-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

ry = "<length>"
The y-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

The arc of an 'ellipse' element begins at the "3 o'clock" point on the radius and progresses towards
the "9 o'clock" point. The starting point and direction of the arc are affected by the user space
transform in the same manner as the geometry of the element.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system
established by the viewBox attribute on the 'svg' element and the transform attribute on the 'g' and
'ellipse' elements. Both ellipses use the default values of zero for the cx and cy attributes (the center
of the ellipse). The second ellipse is rotated.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example ellipse01 - examples of ellipses</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2" />
 <g transform="translate(300 200)">
 <ellipse rx="250" ry="100"
 fill="red" />
 </g>
 <ellipse transform="translate(900 200) rotate(-30)"
 rx="250" ry="100"
 fill="none" stroke="blue" stroke-width="20" />
</svg>

Example ellipse01

http://www.w3.org/TR/SVG/shapes.html (8 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Basic Shapes - SVG 1.1 - 20030114

View this example as SVG (SVG-enabled browsers only)

9.5 The 'line' element

The 'line' element defines a line segment that starts at one point and ends at another.

<!ENTITY % SVG.line.extra.content "" >
<!ENTITY % SVG.line.element "INCLUDE" >
<![%SVG.line.element;[
<!ENTITY % SVG.line.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.line.extra.content;)*)"
>
<!ELEMENT %SVG.line.qname; %SVG.line.content; >

<!-- end of SVG.line.element -->]]>
<!ENTITY % SVG.line.attlist "INCLUDE" >
<![%SVG.line.attlist;[
<!ATTLIST %SVG.line.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Marker.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 x1 %Coordinate.datatype; #IMPLIED

 y1 %Coordinate.datatype; #IMPLIED

 x2 %Coordinate.datatype; #IMPLIED

 y2 %Coordinate.datatype; #IMPLIED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

x1 = "<coordinate>"
The x-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y1 = "<coordinate>"
The y-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.

http://www.w3.org/TR/SVG/shapes.html (9 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/ellipse01.svg

Basic Shapes - SVG 1.1 - 20030114

Animatable: yes.
x2 = "<coordinate>"

The x-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y2 = "<coordinate>"
The y-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;,
externalResourcesRequired, style, %PresentationAttributes-Color;, %PresentationAttributes-
FillStroke;, %PresentationAttributes-Graphics;.

Mathematically, a 'line' element can be mapped to an equivalent 'path' element as follows: (Note: all
coordinate and length values are first converted into user space coordinates according to Units.)

● perform an absolute moveto operation to absolute location (x1,y1), where x1 and y1 are the
values of the 'line' element's x1 and y1 attributes converted to user space, respectively

● perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the
values of the 'line' element's x2 and y2 attributes converted to user space, respectively

Because 'line' elements are single lines and thus are geometrically one-dimensional, they have no
interior; thus, 'line' elements are never filled (see the 'fill' property).

Example line01 below specifies the coordinates of the five lines in the user coordinate system
established by the viewBox attribute on the 'svg' element. The lines have different thicknesses.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example line01 - lines expressed in user coordinates</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2" />
 <g stroke="green" >
 <line x1="100" y1="300" x2="300" y2="100"
 stroke-width="5" />
 <line x1="300" y1="300" x2="500" y2="100"
 stroke-width="10" />
 <line x1="500" y1="300" x2="700" y2="100"
 stroke-width="15" />
 <line x1="700" y1="300" x2="900" y2="100"
 stroke-width="20" />
 <line x1="900" y1="300" x2="1100" y2="100"
 stroke-width="25" />
 </g>
</svg>

http://www.w3.org/TR/SVG/shapes.html (10 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

Example line01

View this example as SVG (SVG-enabled browsers only)

9.6 The 'polyline' element

The 'polyline' element defines a set of connected straight line segments. Typically, 'polyline'
elements define open shapes.

<!ENTITY % SVG.polyline.extra.content "" >
<!ENTITY % SVG.polyline.element "INCLUDE" >
<![%SVG.polyline.element;[
<!ENTITY % SVG.polyline.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.polyline.extra.content;)*)"
>
<!ELEMENT %SVG.polyline.qname; %SVG.polyline.content; >

<!-- end of SVG.polyline.element -->]]>
<!ENTITY % SVG.polyline.attlist "INCLUDE" >
<![%SVG.polyline.attlist;[
<!ATTLIST %SVG.polyline.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Marker.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 points %Points.datatype; #REQUIRED

 transform %TransformList.datatype; #IMPLIED

>

http://www.w3.org/TR/SVG/shapes.html (11 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/line01.svg

Basic Shapes - SVG 1.1 - 20030114

Attribute definitions:

points = "<list-of-points>"
The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent
behavior as occurs with an incorrectly specified 'path' element.

Mathematically, a 'polyline' element can be mapped to an equivalent 'path' element as follows:

● perform an absolute moveto operation to the first coordinate pair in the list of points
● for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate

pair.

Example polyline01 below specifies a polyline in the user coordinate system established by the
viewBox attribute on the 'svg' element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example polyline01 - increasingly larger bars</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2" />
 <polyline fill="none" stroke="blue" stroke-width="10"
 points="50,375
 150,375 150,325 250,325 250,375
 350,375 350,250 450,250 450,375
 550,375 550,175 650,175 650,375
 750,375 750,100 850,100 850,375
 950,375 950,25 1050,25 1050,375
 1150,375" />
</svg>

Example polyline01

http://www.w3.org/TR/SVG/shapes.html (12 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

View this example as SVG (SVG-enabled browsers only)

9.7 The 'polygon' element

The 'polygon' element defines a closed shape consisting of a set of connected straight line
segments.

<!ENTITY % SVG.polygon.extra.content "" >
<!ENTITY % SVG.polygon.element "INCLUDE" >
<![%SVG.polygon.element;[
<!ENTITY % SVG.polygon.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class;

 %SVG.polygon.extra.content;)*)"
>
<!ELEMENT %SVG.polygon.qname; %SVG.polygon.content; >

<!-- end of SVG.polygon.element -->]]>
<!ENTITY % SVG.polygon.attlist "INCLUDE" >
<![%SVG.polygon.attlist;[
<!ATTLIST %SVG.polygon.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Marker.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 points %Points.datatype; #REQUIRED

 transform %TransformList.datatype; #IMPLIED

>

Attribute definitions:

points = "<list-of-points>"
The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent
behavior as occurs with an incorrectly specified 'path' element.

Mathematically, a 'polygon' element can be mapped to an equivalent 'path' element as follows:

http://www.w3.org/TR/SVG/shapes.html (13 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/polyline01.svg

Basic Shapes - SVG 1.1 - 20030114

● perform an absolute moveto operation to the first coordinate pair in the list of points
● for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate

pair
● perform a closepath command

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate
system established by the viewBox attribute on the 'svg' element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example polygon01 - star and hexagon</desc>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="1198" height="398"
 fill="none" stroke="blue" stroke-width="2" />
 <polygon fill="red" stroke="blue" stroke-width="10"
 points="350,75 379,161 469,161 397,215
 423,301 350,250 277,301 303,215
 231,161 321,161" />
 <polygon fill="lime" stroke="blue" stroke-width="10"
 points="850,75 958,137.5 958,262.5
 850,325 742,262.6 742,137.5" />
</svg>

Example polygon01

View this example as SVG (SVG-enabled browsers only)

9.8 The grammar for points specifications in 'polyline' and 'polygon' elements

The following is the Backus-Naur Form (BNF) for points specifications in 'polyline' and 'polygon'
elements. The following notation is used:

● *: 0 or more
● +: 1 or more
● ?: 0 or 1
● (): grouping
● |: separates alternatives

http://www.w3.org/TR/SVG/shapes.html (14 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/images/shapes/polygon01.svg

Basic Shapes - SVG 1.1 - 20030114

● double quotes surround literals

list-of-points:
 wsp* coordinate-pairs? wsp*
coordinate-pairs:
 coordinate-pair
 | coordinate-pair comma-wsp coordinate-pairs
coordinate-pair:
 coordinate comma-wsp coordinate
coordinate:
 number
number:
 sign? integer-constant
 | sign? floating-point-constant
comma-wsp:
 (wsp+ comma? wsp*) | (comma wsp*)
comma:
 ","
integer-constant:
 digit-sequence
floating-point-constant:
 fractional-constant exponent?
 | digit-sequence exponent
fractional-constant:
 digit-sequence? "." digit-sequence
 | digit-sequence "."
exponent:
 ("e" | "E") sign? digit-sequence
sign:
 "+" | "-"
digit-sequence:
 digit
 | digit digit-sequence
digit:
 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
wsp:
 (#x20 | #x9 | #xD | #xA)+

9.9 Shape Module

Elements Attributes Content Model

path

Core.attrib, Conditional.attrib, External.attrib,
Style.attrib, transform, d, pathLength,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, Marker.attrib

(Description.class | Animation.class)*

rect

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, x, y, width, height, rx, ry, transform

(Description.class | Animation.class)*

http://www.w3.org/TR/SVG/shapes.html (15 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

circle

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, cx, cy, r, transform

(Description.class | Animation.class)*

line

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, x1, y1, x2, y2, transform

(Description.class | Animation.class)*

ellipse

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, cx, cy, rx, ry, transform

(Description.class | Animation.class)*

polyline

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, points, transform

(Description.class | Animation.class)*

polygon

Core.attrib, Conditional.attrib, Style.attrib,
GraphicalEvents.attrib, Paint.attrib, Paint.attrib,
Opacity.attrib, Graphics.attrib, Cursor.attrib,
Filter.attrib, Mask.attrib, GraphicalEvents.attrib,
Clip.attrib, points, transform

(Description.class | Animation.class)*

9.9.1 Shape Content Set

The Shape Module defines the Shape.class content set.

Content Set Name Elements in Content Set

Shape.class rect, circle, line, polyline, polygon, ellipse, path

9.10 DOM interfaces

The following interfaces are defined below: SVGRectElement, SVGCircleElement,
SVGEllipseElement, SVGLineElement, SVGAnimatedPoints, SVGPolylineElement,
SVGPolygonElement.

Interface SVGRectElement

The SVGRectElement interface corresponds to the 'rect' element.

http://www.w3.org/TR/SVG/shapes.html (16 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

IDL Definition

interface SVGRectElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 readonly attribute SVGAnimatedLength rx;
 readonly attribute SVGAnimatedLength ry;
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'rect' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'rect' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'rect' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'rect' element.

readonly SVGAnimatedLength rx
Corresponds to attribute rx on the given 'rect' element.

readonly SVGAnimatedLength ry
Corresponds to attribute ry on the given 'rect' element.

Interface SVGCircleElement

The SVGCircleElement interface corresponds to the 'circle' element.

IDL Definition

interface SVGCircleElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {

http://www.w3.org/TR/SVG/shapes.html (17 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

 readonly attribute SVGAnimatedLength cx;
 readonly attribute SVGAnimatedLength cy;
 readonly attribute SVGAnimatedLength r;
};

Attributes

readonly SVGAnimatedLength cx
Corresponds to attribute cx on the given 'circle' element.

readonly SVGAnimatedLength cy
Corresponds to attribute cy on the given 'circle' element.

readonly SVGAnimatedLength r
Corresponds to attribute r on the given 'circle' element.

Interface SVGEllipseElement

The SVGEllipseElement interface corresponds to the 'ellipse' element.

IDL Definition

interface SVGEllipseElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedLength cx;
 readonly attribute SVGAnimatedLength cy;
 readonly attribute SVGAnimatedLength rx;
 readonly attribute SVGAnimatedLength ry;
};

Attributes

readonly SVGAnimatedLength cx
Corresponds to attribute cx on the given 'ellipse' element.

readonly SVGAnimatedLength cy
Corresponds to attribute cy on the given 'ellipse' element.

readonly SVGAnimatedLength rx
Corresponds to attribute rx on the given 'ellipse' element.

readonly SVGAnimatedLength ry
Corresponds to attribute ry on the given 'ellipse' element.

http://www.w3.org/TR/SVG/shapes.html (18 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

Interface SVGLineElement

The SVGLineElement interface corresponds to the 'line' element.

IDL Definition

interface SVGLineElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedLength x1;
 readonly attribute SVGAnimatedLength y1;
 readonly attribute SVGAnimatedLength x2;
 readonly attribute SVGAnimatedLength y2;
};

Attributes

readonly SVGAnimatedLength x1
Corresponds to attribute x1 on the given 'line' element.

readonly SVGAnimatedLength y1
Corresponds to attribute y1 on the given 'line' element.

readonly SVGAnimatedLength x2
Corresponds to attribute x2 on the given 'line' element.

readonly SVGAnimatedLength y2
Corresponds to attribute y2 on the given 'line' element.

Interface SVGAnimatedPoints

The SVGAnimatedPoints interface supports elements which have a 'points' attribute which holds a
list of coordinate values and which support the ability to animate that attribute.

Additionally, the 'points' attribute on the original element accessed via the XML DOM (e.g., using the
getAttribute() method call) will reflect any changes made to points.

IDL Definition

interface SVGAnimatedPoints {
 readonly attribute SVGPointList points;
 readonly attribute SVGPointList animatedPoints;
};

http://www.w3.org/TR/SVG/shapes.html (19 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

Attributes

readonly SVGPointList points

Provides access to the base (i.e., static) contents of the points attribute.

readonly SVGPointList animatedPoints

Provides access to the current animated contents of the points attribute. If the given
attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated,
contains the same value as 'points'.

Interface SVGPolylineElement

The SVGPolylineElement interface corresponds to the 'polyline' element.

IDL Definition

interface SVGPolylineElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget,
 SVGAnimatedPoints {};

Interface SVGPolygonElement

The SVGPolygonElement interface corresponds to the 'polygon' element.

IDL Definition

interface SVGPolygonElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,

http://www.w3.org/TR/SVG/shapes.html (20 of 21)4/2/07 5:36 PM

Basic Shapes - SVG 1.1 - 20030114

 SVGTransformable,
 events::EventTarget,
 SVGAnimatedPoints {};

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/shapes.html (21 of 21)4/2/07 5:36 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Text - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

10 Text

Contents

● 10.1 Introduction
● 10.2 Characters and their corresponding glyphs
● 10.3 Fonts, font tables and baselines
● 10.4 The 'text' element
● 10.5 The 'tspan' element
● 10.6 The 'tref' element
● 10.7 Text layout

❍ 10.7.1 Text layout introduction
❍ 10.7.2 Setting the inline-progression-direction
❍ 10.7.3 Glyph orientation within a text run
❍ 10.7.4 Relationship with bidirectionality

● 10.8 Text rendering order
● 10.9 Alignment properties

❍ 10.9.1 Text alignment properties
❍ 10.9.2 Baseline alignment properties

● 10.10 Font selection properties
● 10.11 Spacing properties
● 10.12 Text decoration
● 10.13 Text on a path

❍ 10.13.1 Introduction to text on a path
❍ 10.13.2 The 'textPath' element
❍ 10.13.3 Text on a path layout rules

● 10.14 Alternate glyphs
● 10.15 White space handling
● 10.16 Text selection and clipboard operations
● 10.17 Text Module
● 10.18 Basic Text Module
● 10.19 DOM interfaces

10.1 Introduction

Text that is to be rendered as part of an SVG document fragment is specified using the 'text' element. The
characters to be drawn are expressed as XML character data [XML10] inside the 'text' element.

http://www.w3.org/TR/SVG/text.html (1 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-xml

Text - SVG 1.1 - 20030114

SVG's 'text' elements are rendered like other graphics elements. Thus, coordinate system transformations,
painting, clipping and masking features apply to 'text' elements in the same way as they apply to shapes such as
paths and rectangles.

Each 'text' element causes a single string of text to be rendered. SVG performs no automatic line breaking or
word wrapping. To achieve the effect of multiple lines of text, use one of the following methods:

● The author or authoring package needs to pre-compute the line breaks and use multiple 'text' elements
(one for each line of text).

● The author or authoring package needs to pre-compute the line breaks and use a single 'text' element with
one or more 'tspan' child elements with appropriate values for attributes x, y, dx and dy to set new start
positions for those characters which start new lines. (This approach allows user text selection across
multiple lines of text -- see Text selection and clipboard operations.)

● Express the text to be rendered in another XML namespace such as XHTML [XHTML] embedded inline
within a 'foreignObject' element. (Note: the exact semantics of this approach are not completely defined at
this time.)

The text strings within 'text' elements can be rendered in a straight line or rendered along the outline of a 'path'
element. SVG supports the following international text processing features for both straight line text and text on a
path:

● horizontal and vertical orientation of text
● left-to-right or bidirectional text (i.e., languages which intermix right-to-left and left-to-right text, such as

Arabic and Hebrew)
● when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for

Arabic and Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are
described in Text on a path layout rules.)

Because SVG text is packaged as XML character data [XML10]:

● Text data in SVG content is readily accessible to the visually impaired (see Accessibility Support)
● In many viewing scenarios, the user will be able to search for and select text strings and copy selected text

strings to the system clipboard (see Text selection and clipboard operations)
● XML-compatible Web search engines will find text strings in SVG content with no additional effort over what

they need to do to find text strings in other XML documents

Multi-language SVG content is possible by substituting different text strings based on the user's preferred
language.

For accessibility reasons, it is recommended that text which is included in a document have appropriate semantic
markup to indicate its function. See SVG accessibility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10], textual content is defined in terms of a sequence of XML characters, where each character is
defined by a particular Unicode code point [UNICODE]. Fonts, on the other hand, consists of a collection of
glyphs and other associated information, such as font tables. A glyph is a presentable form of one or more
characters (or a part of a character in some cases). Each glyph consists of some sort of identifier (in some cases
a string, in other cases a number) along with drawing instructions for rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphs in a
font. For example, it is common for a font designed for Latin languages (where the term Latin is used for

http://www.w3.org/TR/SVG/text.html (2 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/SVG/access.html
http://www.w3.org/TR/SVG/i18n.html#I18nTextSubstitution
http://www.w3.org/TR/SVG/i18n.html#I18nTextSubstitution
http://www.w3.org/TR/SVG/access.html#SVGAccessibilityGuidelines
http://www.w3.org/TR/REC-xml
http://www.unicode.org/unicode/standard/versions/

Text - SVG 1.1 - 20030114

European languages such as English with alphabets similar to and/or derivative to the Latin language) to contain
a single glyph for each of the standard ASCII characters (i.e., A-to-Z, a-to-z, 0-to-9, plus the various punctuation
characters found in ASCII). Thus, in most situations, the string "XML", which consists of three Unicode characters,
would be rendered by the three glyphs corresponding to "X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs. Some
of the circumstances when the mapping is not one-to-one:

● Ligatures - For best looking typesetting, it is often desirable that particular sequences of characters are
rendered as a single glyph. An example is the word "office". Many fonts will define an "ffi" ligature. When
the word "office" is rendered, sometimes the user agent will render the glyph for the "ffi" ligature instead of
rendering distinct glyphs (i.e., "f", "f" and "i") for each of the three characters. Thus, for ligatures, multiple
Unicode characters map to a single glyph. (Note that for proper rendering of some languages, ligatures are
required for certain character combinations.)

● Composite characters - In various situations, commonly used adornments such as diacritical marks will be
stored once in a font as a particular glyph and then composed with one or more other glyphs to result in the
desired character. For example, it is possible that a font engine might render the é character by first
rendering the glyph for e and then rendering the glyph for ´ (the accent mark) such that the accent mark will
appear over the e. In this situation, a single Unicode character maps to multiple glyphs.

● Glyph substitution - Some typography systems examine the nature of the textual content and utilize
different glyphs in different circumstances. For example, in Arabic, the same Unicode character might
render as any of four different glyphs, depending on such factors as whether the character appears at the
start, the end or the middle of a sequence of cursively joined characters. Different glyphs might be used for
a punctuation character depending on inline-progression-direction (e.g., horizontal vs. vertical). In these
situations, a single Unicode character might map to one of several alternative glyphs.

● In some languages, particular sequences of characters will be converted into multiple glyphs such that
parts of a particular character are in one glyph and the remainder of that character is in another glyph.

● Alternative glyph specification - SVG contains a facility for the author to explicitly specify that a particular
sequence of Unicode characters is to be rendered using a particular glyph. (See Alternate glyphs.) When
this facility is used, multiple Unicode characters map to a single glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the
possibility that the rendering of text might be (usually slightly) different when viewed in different user
environments. If the author of SVG content requires precise selection of fonts and glyphs, then the
recommendation is that the necessary fonts (potentially subsetted to include only the glyphs needed for the given
document) be available either as SVG fonts embedded within the SVG content or as WebFonts posted at the
same Web location as the SVG content.

Throughout this chapter, the term character shall be equivalent to the definition of a character in XML [XML10].

10.3 Fonts, font tables and baselines

A font consists of a collection of glyphs together with the information (the font tables) necessary to use those
glyphs to present characters on some medium. The combination of the collection of glyphs and the font tables is
called the font data. The font tables include the information necessary to map characters to glyphs, to determine
the size of glyph areas and to position the glyph area. Each font table consists of one or more font characteristics,
such as the font-weight and font-style.

The geometric font characteristics are expressed in a coordinate system based on the EM box. (The EM is a
relative measure of the height of the glyphs in the font; see CSS2 em square.) The box 1 EM high and 1 EM wide
is called the design space. This space is given a geometric coordinates by sub-dividing the EM into a number of
units-per-em.

Note: Units-per-em is a font characteristic. A typical value for units-per-EM is 1000 or 2048.

The coordinate space of the EM box is called the design space coordinate system. For scalable fonts, the curves

http://www.w3.org/TR/SVG/text.html (3 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2/fonts.html#emsq
http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem

Text - SVG 1.1 - 20030114

and lines that are used to draw a glyph are represented using this coordinate system.

Note: Most often, the (0,0) point in this coordinate system is positioned on the left edge of the EM box, but not at
the bottom left corner. The Y coordinate of the bottom of a roman capital letter is usually zero. And the
descenders on lowercase roman letters have negative coordinate values.

SVG assumes that the font tables will provide at least three font characteristics: an ascent, a descent and a set of
baseline-tables. The ascent is the distance to the top of the EM box from the (0,0) point of the font; the descent is
the distance to the bottom of the EM box from the (0.0) point of the font. The baseline-table is explained below.

Note: Within an OpenType font, for horizontal writing-modes, the ascent and descent are given by the
sTypoAscender and sTypoDescender entries in the OS/2 table. For vertical writing-modes, the descent (the
distance, in this case from the (0,0) point to the left edge of the glyph) is normally zero because the (0,0) point is
on the left edge. The ascent for vertical writing-modes is either 1 em or is specified by the ideographic top
baseline value in the OpenType Base table for vertical writing-modes.

In horizontal writing-modes, the glyphs of a given script are positioned so that a particular point on each glyph, the
alignment-point, is aligned with the alignment-points of the other glyphs in that script. The glyphs of different
scripts, for example, Western, Northern Indic and Far-Eastern scripts, are typically aligned at different points on
the glyph. For example, Western glyphs are aligned on the bottoms of the capital letters, northern indic glyphs are
aligned at the top of a horizontal stroke near the top of the glyphs and far-eastern glyphs are aligned either at the
bottom or center of the glyph. Within a script and within a line of text having a single font-size, the sequence of
alignment-points defines, in the inline- progression-direction, a geometric line called a baseline. Western and most
other alphabetic and syllabic glyphs are aligned to an "alphabetic" baseline, the northern indic glyphs are aligned
to a "hanging" baseline and the far-eastern glyphs are aligned to an "ideographic" baseline.

A baseline-table specifies the position of one or more baselines in the design space coordinate system. The
function of the baseline table is to facilitate the alignment of different scripts with respect to each other when they
are mixed on the same text line. Because the desired relative alignments may depend on which script is dominant
in a line (or block), there may be a different baseline table for each script. In addition, different alignment positions
are needed for horizontal and vertical writing modes. Therefore, the font may have a set of baseline tables:
typically, one or more for horizontal writing-modes and zero or more for vertical writing-modes.

Note: Some fonts may not have values for the baseline tables. Heuristics are suggested for approximating the
baseline tables when a given font does not supply baseline tables.

SVG further assumes that for each glyph in the font data for a font, there are two width values, two alignment-
baselines and two alignment-points, one each for horizontal writing-modes and the other for vertical writing-
modes. (Even though it is specified as a width, for vertical writing-modes the width is used in the vertical
direction.) The script to which a glyph belongs determines an alignment-baseline to which the glyph is to be
aligned. The inline-progression-direction position of the alignment-point is on the start-edge of the glyph.

Properties related to baselines are described below under Baseline alignment properties.

In addition to the font characteristics required above, a font may also supply substitution and positioning tables
that can be used by a formatter to re-order, combine and position a sequence of glyphs to make one or more
composite glyphs. The combination may be as simple as a ligature, or as complex as an indic syllable which
combines, usually with some re-ordering, multiple consonants and vowel glyphs.

10.4 The 'text' element

The 'text' element defines a graphics element consisting of text. The XML [XML10] character data within the 'text'
element, along with relevant attributes and properties and character-to-glyph mapping tables within the font itself,
define the glyphs to be rendered. (See Characters and their corresponding glyphs.) The attributes and properties
on the 'text' element indicate such things as the writing direction, font specification and painting attributes which
describe how exactly to render the characters. Subsequent sections of this chapter describe the relevant text-

http://www.w3.org/TR/SVG/text.html (4 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-xml

Text - SVG 1.1 - 20030114

specific attributes and properties, particular text layout and bidirectionality.

Since 'text' elements are rendered using the same rendering methods as other graphics elements, all of the same
coordinate system transformations, painting, clipping and masking features that apply to shapes such as paths
and rectangles also apply to 'text' elements.

It is possible to apply a gradient, pattern, clipping path, mask or filter to text. When one of these facilities is applied
to text and keyword objectBoundingBox is used (see Object bounding box units) to specify a graphical effect
relative to the "object bounding box", then the object bounding box units are computed relative to the entire 'text'
element in all cases, even when different effects are applied to different 'tspan' elements within the same 'text'
element.

The 'text' element renders its first glyph (after bidirectionality reordering) at the initial current text position, which is
established by the x and y attributes on the 'text' element (with possible adjustments due to the value of the 'text-
anchor' property, the presence of a 'textPath' element containing the first character, and/or an x, y, dx or dy
attributes on a 'tspan', 'tref' or 'altGlyph' element which contains the first character). After the glyph(s)
corresponding to the given character is(are) rendered, the current text position is updated for the next character.
In the simplest case, the new current text position is the previous current text position plus the glyphs' advance
value (horizontal or vertical). See text layout for a description of glyph placement and glyph advance.

<!ENTITY % SVG.text.extra.content "" >
<!ENTITY % SVG.text.element "INCLUDE" >
<![%SVG.text.element;[
<!ENTITY % SVG.text.content
 "(#PCDATA | %SVG.Description.class; | %SVG.Animation.class;

 %SVG.TextContent.class; %SVG.Hyperlink.class;

 %SVG.text.extra.content;)*"
>
<!ELEMENT %SVG.text.qname; %SVG.text.content; >

<!-- end of SVG.text.element -->]]>
<!ENTITY % SVG.text.attlist "INCLUDE" >
<![%SVG.text.attlist;[
<!ATTLIST %SVG.text.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Text.attrib;

 %SVG.TextContent.attrib;

 %SVG.Font.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 x %Coordinates.datatype; #IMPLIED

 y %Coordinates.datatype; #IMPLIED

 dx %Lengths.datatype; #IMPLIED

 dy %Lengths.datatype; #IMPLIED

 rotate %Numbers.datatype; #IMPLIED

 textLength %Length.datatype; #IMPLIED

 lengthAdjust (spacing | spacingAndGlyphs) #IMPLIED
 transform %TransformList.datatype; #IMPLIED

http://www.w3.org/TR/SVG/text.html (5 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

>

Attribute definitions:

x = "<coordinate>+"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the current
text position for rendering the glyphs that correspond to the first character within this element or any of its
descendants.
If a comma- or space-separated list of <n> <coordinate>s is provided, then the values represent new
absolute X coordinates for the current text position for rendering the glyphs corresponding to each of the
first <n> characters within this element or any of its descendants.
For additional processing rules, refer to the description of the x attribute on the 'tspan' element.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>+"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the 'y' attribute parallel the processing rules for the 'x' attribute.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

dx = "<length>+"
Shifts in the current text position along the x-axis for the characters within this element or any of its
descendants.
Refer to the description of the dx attribute on the 'tspan' element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the x-
axis will occur.
Animatable: yes.

dy = "<length>+"
Shifts in the current text position along the y-axis for the characters within this element or any of its
descendants.
Refer to the description of the dy attribute on the 'tspan' element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the y-
axis will occur.
Animatable: yes.

rotate = "<number>+"
The supplemental rotation about the current text position that will be applied to all of the glyphs
corresponding to each character within this element.
Refer to the description of the rotate attribute on the 'tspan' element.
If the attribute is not specified on this element or any of its descendants, no supplemental rotations will
occur.
Animatable: yes (non-additive, 'set' and 'animate' elements only).

textLength = "<length>"
The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of properties
'kerning', 'letter-spacing' and 'word-spacing' and adjustments due to attributes dx and dy on 'tspan'
elements. This value is used to calibrate the user agent's own calculations with that of the author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order after
any bidirectional reordering, for the first and last rendered glyphs that correspond to this element; thus, for
the last rendered character (in visual rendering order after any bidirectional reordering), any supplemental
inter-character spacing beyond normal glyph advances are ignored (in most cases) when the user agent
determines the appropriate amount to expand/compress the text string to fit within a length of textLength.
A negative value is an error (see Error processing).
If the attribute is not specified, the effect is as if the author's computation exactly matched the value
calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

http://www.w3.org/TR/SVG/text.html (6 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Text - SVG 1.1 - 20030114

lengthAdjust = "spacing|spacingAndGlyphs"
Indicates the type of adjustments which the user agent shall make to make the rendered length of the text
match the value specified on the textLength attribute.
spacing indicates that only the advance values are adjusted. The glyphs themselves are not stretched or
compressed.
spacingAndGlyphs indicates that the advance values are adjusted and the glyphs themselves stretched or
compressed in one axis (i.e., a direction parallel to the inline-progression-direction).
The user agent is required to achieve correct start and end positions for the text strings, but the locations of
intermediate glyphs are not predictable because user agents might employ advanced algorithms to stretch
or compress text strings in order to balance correct start and end positioning with optimal typography.
Note that, for a text string that contains <n> characters, the adjustments to the advance values often occur
only for <n-1> characters (see description of attribute textLength), whereas stretching or compressing of the
glyphs will be applied to all <n> characters.
If the attribute is not specified, the effect is as a value of spacing were specified.
Animatable: yes.

Example text01 below contains the text string "Hello, out there" which will be rendered onto the canvas using the
Verdana font family with the glyphs filled with the color blue.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example text01 - 'Hello, out there' in blue</desc>
 <text x="250" y="150"
 font-family="Verdana" font-size="55" fill="blue" >
 Hello, out there
 </text>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="998" height="298"
 fill="none" stroke="blue" stroke-width="2" />
</svg>

Example text01

View this example as SVG (SVG-enabled browsers only)

10.5 The 'tspan' element

Within a 'text' element, text and font properties and the current text position can be adjusted with absolute or
relative coordinate values by including a 'tspan' element.

http://www.w3.org/TR/SVG/text.html (7 of 28)4/2/07 7:16 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/text/text01.svg

Text - SVG 1.1 - 20030114

<!ENTITY % SVG.tspan.extra.content "" >
<!ENTITY % SVG.tspan.element "INCLUDE" >
<![%SVG.tspan.element;[
<!ENTITY % SVG.tspan.content
 "(#PCDATA | %SVG.tspan.qname; | %SVG.tref.qname; | %SVG.altGlyph.qname;

 | %SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;

 | %SVG.Description.class; %SVG.Hyperlink.class;

 %SVG.tspan.extra.content;)*"
>
<!ELEMENT %SVG.tspan.qname; %SVG.tspan.content; >

<!-- end of SVG.tspan.element -->]]>
<!ENTITY % SVG.tspan.attlist "INCLUDE" >
<![%SVG.tspan.attlist;[
<!ATTLIST %SVG.tspan.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.TextContent.attrib;

 %SVG.Font.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 x %Coordinates.datatype; #IMPLIED

 y %Coordinates.datatype; #IMPLIED

 dx %Lengths.datatype; #IMPLIED

 dy %Lengths.datatype; #IMPLIED

 rotate %Numbers.datatype; #IMPLIED

 textLength %Length.datatype; #IMPLIED

 lengthAdjust (spacing | spacingAndGlyphs) #IMPLIED
>

Attribute definitions:

x = "<coordinate>+"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the current
text position for rendering the glyphs that correspond to the first character within this element or any of its
descendants.
If a comma- or space-separated list of <n> <coordinate>s is provided, then the values represent new
absolute X coordinates for the current text position for rendering the glyphs corresponding to each of the
first <n> characters within this element or any of its descendants.
If more <coordinate>s are provided than characters, then the extra <coordinate>s will have no effect on
glyph positioning.
If more characters exist than <coordinate>s, then for each of these extra characters: (a) if an ancestor 'text'
or 'tspan' element specifies an absolute X coordinate for the given character via an x attribute, then that
absolute X coordinate is used as the starting X coordinate for that character (nearest ancestor has
precedence), else (b) the starting X coordinate for rendering the glyphs corresponding to the given
character is the X coordinate of the resulting current text position from the most recently rendered glyph for
the current 'text' element.
If the attribute is not specified: (a) if an ancestor 'text' or 'tspan' element specifies an absolute X coordinate

http://www.w3.org/TR/SVG/text.html (8 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

for a given character via an x attribute, then that absolute X coordinate is used (nearest ancestor has
precedence), else (b) the starting X coordinate for rendering the glyphs corresponding to a given character
is the X coordinate of the resulting current text position from the most recently rendered glyph for the
current 'text' element.
Animatable: yes.

y = "<coordinate>+"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the 'y' attribute parallel the processing rules for the 'x' attribute.
Animatable: yes.

dx = "<length>+"
If a single <length> is provided, this value represents the new relative X coordinate for the current text
position for rendering the glyphs corresponding to the first character within this element or any of its
descendants. The current text position is shifted along the x-axis of the current user coordinate system by
<length> before the first character's glyphs are rendered.
If a comma- or space-separated list of <n> <length>s is provided, then the values represent incremental
shifts along the x-axis for the current text position before rendering the glyphs corresponding to the first <n>
characters within this element or any of its descendants. Thus, before the glyphs are rendered
corresponding to each character, the current text position resulting from drawing the glyphs for the previous
character within the current 'text' element is shifted along the X axis of the current user coordinate system
by <length>.
If more <length>s are provided than characters, then any extra <length>s will have no effect on glyph
positioning.
If more characters exist than <length>s, then for each of these extra characters: (a) if an ancestor 'text' or
'tspan' element specifies a relative X coordinate for the given character via a dx attribute, then the current
text position is shifted along the x-axis of the current user coordinate system by that amount (nearest
ancestor has precedence), else (b) no extra shift along the x-axis occurs.
If the attribute is not specified: (a) if an ancestor 'text' or 'tspan' element specifies a relative X coordinate for
a given character via a dx attribute, then the current text position is shifted along the x-axis of the current
user coordinate system by that amount (nearest ancestor has precedence), else (b) no extra shift along the
x-axis occurs.
Animatable: yes.

dy = "<length>+"
The corresponding list of relative Y coordinates for the characters within the 'tspan' element. The
processing rules for the 'dy' attribute parallel the processing rules for the 'dx' attribute.
Animatable: yes.

rotate = "<number>+"
The supplemental rotation about the current text position that will be applied to all of the glyphs
corresponding to each character within this element.
If a comma- or space-separated list of <number>s is provided, then the first <number> represents the
supplemental rotation for the glyphs corresponding to the first character within this element or any of its
descendants, the second <number> represents the supplemental rotation for the glyphs that correspond to
the second character, and so on.
If more <number>s are provided than there are characters, then the extra <number>s will be ignored.
If more characters are provided than <number>s, then for each of these extra characters: (a) if an ancestor
'text' or 'tspan' element specifies a supplemental rotation for the given character via a rotate attribute, then
the given supplemental rotation is applied to the given character, else (b) no supplemental rotation occurs.
If the attribute is not specified: (a) if an ancestor 'text' or 'tspan' element specifies a supplemental rotation
for a given character via a rotate attribute, then the given supplemental rotation is applied to the given
character (nearest ancestor has precedence), else (b) no supplemental rotation occurs.
This supplemental rotation has no impact on the rules by which current text position is modified as glyphs
get rendered and is supplemental to any rotation due to text on a path and to 'glyph-orientation-horizontal'
or 'glyph-orientation-vertical'.
Animatable: yes (non-additive, 'set' and 'animate' elements only).

textLength = "<length>"

http://www.w3.org/TR/SVG/text.html (9 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of properties
'kerning', 'letter-spacing' and 'word-spacing' and adjustments due to attributes dx and dy on this 'tspan'
element or any descendants. This value is used to calibrate the user agent's own calculations with that of
the author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order after
any bidirectional reordering, for the first and last rendered glyphs that correspond to this element; thus, for
the last rendered character (in visual rendering order after any bidirectional reordering), any supplemental
inter-character spacing beyond normal glyph advances are ignored (in most cases) when the user agent
determines the appropriate amount to expand/compress the text string to fit within a length of textLength.
If attribute textLength is specified on a given element and also specified on an ancestor, the adjustments on
all character data within this element are controlled by the value of textLength on this element exclusively,
with the possible side-effect that the adjustment ratio for the contents of this element might be different than
the adjustment ratio used for other content that shares the same ancestor. The user agent must assume
that the total advance values for the other content within that ancestor is the difference between the
advance value on that ancestor and the advance value for this element.
A negative value is an error (see Error processing).
If the attribute is not specified anywhere within a 'text' element, the effect is as if the author's computation
exactly matched the value calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

The x, y, dx, dy and rotate on the 'tspan' element are useful in high-end typography scenarios where individual
glyphs require exact placement. These attributes are useful for minor positioning adjustments between characters
or for major positioning adjustments, such as moving the current text position to a new location to achieve the
visual effect of a new line of text. Multi-line 'text' elements are possible by defining different 'tspan' elements for
each line of text, with attributes x, y, dx and/or dy defining the position of each 'tspan'. (An advantage of such an
approach is that users will be able to perform multi-line text selection.)

In situations where micro-level positioning adjustment are necessary for advanced typographic control, the SVG
content designer needs to ensure that the necessary font will be available for all viewers of the document (e.g.,
package up the necessary font data in the form of an SVG font or an alternative WebFont format which is stored
at the same Web site as the SVG content) and that the viewing software will process the font in the expected way
(the capabilities, characteristics and font layout mechanisms vary greatly from system to system). If the SVG
content contains x, y, dx or dy attribute values which are meant to correspond to a particular font processed by a
particular set of viewing software and either of these requirements is not met, then the text might display with poor
quality.

The following additional rules apply to attributes x, y, dx, dy and rotate when they contain a list of numbers:

● When a single XML character maps to a single glyph - In this case, the i-th value for the x, y, dx, dy and
rotate attributes is applied to the glyph that corresponds to the i-th character.

● When a single XML character maps to multiple glyphs (e.g., when an accent glyph is placed on top of a
base glyph) - In this case, the i-th value for the x, y, dx and dy values are applied (i.e., the current text
position is adjusted) before rendering the first glyph. The rotation transformation corresponding to the i-th
rotate value is applied to the glyphs and to the inter-glyph advance values corresponding to this character
on a group basis (i.e., the rotation value creates a temporary new rotated coordinate system, and the
glyphs corresponding to the character are rendered into this rotated coordinate system).

● When multiple XML characters map to a single glyph (e.g., when a ligature is used) - Suppose that the i-th
and (i+1)-th XML characters map to a single glyph. In this case, the i-th value for the x, y, dx, dy and rotate
attributes all apply when rendering the glyph. The (i+1)-th values, however, for x, y and rotate are ignored
(exception: the final rotate value in the list would still apply to subsequent characters), whereas the dx and
dy are applied to the subsequent XML character (i.e., the (i+2)-th character), if one exists, by translating the
current text position by the given amounts before rendering the first glyph associated with that character.

● When there is a many-to-many mapping of characters to glyphs (e.g., when three characters map to two
glyphs, such as when the first glyph expresses the first character and half of the second character, and the

http://www.w3.org/TR/SVG/text.html (10 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/REC-CSS2/fonts.html#q1

Text - SVG 1.1 - 20030114

second glyph expresses the other half of the second character plus the third character) - Suppose that the i-
th, (i+1)-th and (i+2)-th XML characters map to two glyphs. In this case, the i-th value for the x, y, dx and dy
values are applied (i.e., the current text position is adjusted) before rendering the first glyph. The rotation
transformation corresponding to the i-th rotate value is applied to both the two glyphs and the glyph
advance values for the first glyph on a group basis (i.e., the rotation value creates a temporary new rotated
coordinate system, and the two glyphs are rendered into the temporary rotated coordinate system). The (i
+1)-th and (i+2)-th values, however, for the x, y and rotate attributes are not applied (exception: the final
rotate value in the list would still apply to subsequent characters), whereas the (i+1)-th and (i+2)-th values
for the dx and dy attributes are applied to the subsequent XML character (i.e., the (i+3)-th character), if one
exists, by translating the current text position by the given amounts before rendering the first glyph
associated with that character.

● Relationship to bidirectionality - As described below in the discussion on bidirectionality, text is laid out in a
two-step process, where any bidirectional text is first re-ordered into a left-to-right string, and then text
layout occurs with the re-ordered text string. Whenever the character data within a 'tspan' element is re-
ordered, the corresponding elements within the x, y, dx, dy and rotate are also re-ordered to maintain the
correspondence. For example, suppose that you have the following 'tspan' element:

<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Latin and Hebrew</tspan>

and that the word "Hebrew" will be drawn right-to-left. First, the character data and the corresponding
values in the dx list will be reordered, such that the text string will be "Latin and werbeH" and the list of
values for the dx attribute will be "11 12 13 14 15 0 21 22 23 0 36 35 34 33 32 31". After this re-ordering,
the glyphs corresponding to the characters will be positioned using standard left-to-right layout rules.

The following examples show basic use of the 'tspan' element.

Example tspan01 uses a 'tspan' element to indicate that the word "not" is to use a bold font and have red fill.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example tspan01 - using tspan to change visual attributes</desc>
 <g font-family="Verdana" font-size="45" >
 <text x="200" y="150" fill="blue" >
 You are
 <tspan font-weight="bold" fill="red" >not</tspan>
 a banana.
 </text>
 </g>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="998" height="298"
 fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan01

View this example as SVG (SVG-enabled browsers only)

http://www.w3.org/TR/SVG/text.html (11 of 28)4/2/07 7:16 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/text/tspan01.svg

Text - SVG 1.1 - 20030114

Example tspan02 uses the dx and dy attributes on the 'tspan' element to adjust the current text position
horizontally and vertically for particular text strings within a 'text' element.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example tspan02 - using tspan's dx and dy attributes
 for incremental positioning adjustments</desc>
 <g font-family="Verdana" font-size="45" >
 <text x="200" y="150" fill="blue" >
 But you
 <tspan dx="2em" dy="-50" font-weight="bold" fill="red" >
 are
 </tspan>
 <tspan dy="100">
 a peach!
 </tspan>
 </text>
 </g>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="998" height="298"
 fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan02

View this example as SVG (SVG-enabled browsers only)

Example tspan03 uses the x and y attributes on the 'tspan' element to establish a new absolute current text
position for each glyph to be rendered. The example shows two lines of text within a single 'text' element.
Because both lines of text are within the same 'text' element, the user will be able to select through both lines of
text and copy the text to the system clipboard in user agents that support text selection and clipboard operations,

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example tspan03 - using tspan's x and y attributes
 for multiline text and precise glyph positioning</desc>
 <g font-family="Verdana" font-size="45" >
 <text fill="rgb(255,164,0)" >
 <tspan x="300 350 400 450 500 550 600 650" y="100">
 Cute and
 </tspan>
 <tspan x="375 425 475 525 575" y="200">

http://www.w3.org/TR/SVG/text.html (12 of 28)4/2/07 7:16 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/text/tspan02.svg
http://www.w3.org/2000/svg

Text - SVG 1.1 - 20030114

 fuzzy
 </tspan>
 </text>
 </g>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="998" height="298"
 fill="none" stroke="blue" stroke-width="2" />
</svg>

Example tspan03

View this example as SVG (SVG-enabled browsers only)

10.6 The 'tref' element

The textual content for a 'text' can be either character data directly embedded within the 'text' element or the
character data content of a referenced element, where the referencing is specified with a 'tref' element.

<!ENTITY % SVG.tref.extra.content "" >
<!ENTITY % SVG.tref.element "INCLUDE" >
<![%SVG.tref.element;[
<!ENTITY % SVG.tref.content
 "(%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;

 | %SVG.Description.class; %SVG.tref.extra.content;)*"

>
<!ELEMENT %SVG.tref.qname; %SVG.tref.content; >

<!-- end of SVG.tref.element -->]]>
<!ENTITY % SVG.tref.attlist "INCLUDE" >
<![%SVG.tref.attlist;[
<!ATTLIST %SVG.tref.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.TextContent.attrib;

 %SVG.Font.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.Cursor.attrib;

 %SVG.XLinkRequired.attrib;

 %SVG.External.attrib;

 x %Coordinates.datatype; #IMPLIED

 y %Coordinates.datatype; #IMPLIED

http://www.w3.org/TR/SVG/text.html (13 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/SVG/images/text/tspan03.svg

Text - SVG 1.1 - 20030114

 dx %Lengths.datatype; #IMPLIED

 dy %Lengths.datatype; #IMPLIED

 rotate %Numbers.datatype; #IMPLIED

 textLength %Length.datatype; #IMPLIED

 lengthAdjust (spacing | spacingAndGlyphs) #IMPLIED
>

Attribute definitions:

xlink:href = "<uri>"
A URI reference to an element/fragment within an SVG document fragment whose character data content
shall be used as character data for this 'tref' element.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, %xlinkRefAttrs;, %testAttrs;, %langSpaceAttrs;, externalResourcesRequired, class, style, %
PresentationAttributes-Color;, %PresentationAttributes-FillStroke;, %PresentationAttributes-
FontSpecification;, %PresentationAttributes-Graphics;, %PresentationAttributes-TextContent.class;, %
graphicsElementEvents;, x, y, dx, dy, rotate, textLength, lengthAdjust.

All character data within the referenced element, including character data enclosed within additional markup, will
be rendered.

The x, y, dx, dy and rotate attributes have the same meanings as for the 'tspan' element. The attributes are
applied as if the 'tref' element was replaced by a 'tspan' with the referenced character data (stripped of all
supplemental markup) embedded within the hypothetical 'tspan' element.

Example tref01 shows how to use character data from a different element as the character data for a given 'tspan'
element. The first 'text' element (with id="ReferencedText") will not draw because it is part of a 'defs' element. The
second 'text' element draws the string "Inline character data". The third 'text' element draws the string "Reference
character data" because it includes a 'tref' element which is a reference to element "ReferencedText", and that
element's character data is "Referenced character data".

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="10cm" height="3cm" viewBox="0 0 1000 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <defs>
 <text id="ReferencedText">
 Referenced character data
 </text>
 </defs>
 <desc>Example tref01 - inline vs reference text content</desc>
 <text x="100" y="100" font-size="45" fill="blue" >
 Inline character data
 </text>
 <text x="100" y="200" font-size="45" fill="red" >
 <tref xlink:href="#ReferencedText"/>
 </text>
 <!-- Show outline of canvas using 'rect' element -->
 <rect x="1" y="1" width="998" height="298"
 fill="none" stroke="blue" stroke-width="2" />
</svg>

http://www.w3.org/TR/SVG/text.html (14 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

Example tref01

View this example as SVG (SVG-enabled browsers only)

10.7 Text layout

10.7.1 Text layout introduction

This section describes the text layout features supported by SVG, which includes support for various international
writing directions, such as left-to-right (e.g., Latin scripts) and bidirectional (e.g., Hebrew or Arabic) and vertical (e.
g., Asian scripts). The descriptions in this section assume straight line text (i.e., text that is either strictly horizontal
or vertical with respect to the current user coordinate system). Subsequent sections describe the supplemental
layout rules for text on a path.

SVG does not provide for automatic line breaks or word wrapping, which makes internationalized text layout for
SVG relatively simpler than it is for languages which support formatting of multi-line text blocks.

For each 'text' element, the SVG user agent determines the current reference orientation. For standard
horizontal or vertical text (i.e., no text-on-a-path), the reference orientation is the vector pointing towards negative
infinity in Y within the current user coordinate system. (Note: in the initial coordinate system, the reference
orientation is up.) For text on a path, the reference orientation is reset with each character.

Based on the reference orientation and the value for property 'writing-mode', the SVG user agent determines the
current inline-progression-direction. For left-to-right text, the inline-progression-direction points 90 degrees
clockwise from the reference orientation vector. For right-to-left text, the inline progression points 90 degrees
counter-clockwise from the reference orientation vector. For top-to-bottom text, the inline-progression-direction
points 180 degrees from the reference orientation vector.

Based on the reference orientation and the value for property 'writing-mode', the SVG user agent determines the
current block-progression-direction. For left-to-right and right-to-left text, the block-progression-direction points
180 degrees from the reference orientation vector because the only available horizontal 'writing-mode's are lr-tb
and rl-tb. For top-to-bottom text, the block-progression-direction always points 90 degrees counter-clockwise from
the reference orientation vector because the only available top-to-bottom 'writing-mode' is tb-rl.

The shift direction is the direction towards which the baseline table moves due to positive values for property
'baseline-shift'. The shift direction is such that a positive value shifts the baseline table towards the topmost entry
in the parent's baseline table.

In processing a given 'text' element, the SVG user agent keeps track of the current text position. The initial
current text position is established by the x and y attributes on the 'text' element.

The current text position is adjusted after each glyph to establish a new current text position at which the next
glyph shall be rendered. The adjustment to the current text position is based on the current inline-progression-
direction, glyph-specific advance values corresponding to the glyph orientation of the glyph just rendered, kerning
tables in the font and the current values of various attributes and properties, such as the spacing properties and

http://www.w3.org/TR/SVG/text.html (15 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/SVG/images/text/tref01.svg

Text - SVG 1.1 - 20030114

any x, y, dx and dy attributes on 'text', 'tspan', 'tref' or 'altGlyph' elements. If a glyph does not provide explicit
advance values corresponding to the current glyph orientation, then an appropriate approximation should be
used. For vertical text, a suggested approximation is the sum of the ascent and descent values for the glyph.
Another suggested approximation for an advance value for both horizontal and vertical text is the size of an em
(see units-per-em).

For each glyph to be rendered, the SVG user agent determines an appropriate alignment-point on the glyph
which will be placed exactly at the current text position. The alignment-point is determined based on glyph cell
metrics in the glyph itself, the current inline-progression-direction and the glyph orientation relative to the inline-
progression-direction. For most uses of Latin text (i.e., 'writing-mode:lr', 'text-anchor:start', and 'alignment-baseline:
baseline') the alignment-point in the glyph will be the intersection of left edge of the glyph cell (or some other glyph-
specific x-axis coordinate indicating a left-side origin point) with the Latin baseline of the glyph. For many cases
with top-to-bottom vertical text layout, the reference point will be either a glyph-specific origin point based on the
set of vertical baselines for the font or the intersection of the center of the glyph with its top line (see [CSS2-
topline] for a definition of top line). If a glyph does not provide explicit origin points corresponding to the current
glyph orientation, then an appropriate approximation should be used, such as the intersection of the left edge of
the glyph with the appropriate horizontal baseline for the glyph or intersection of the top edge of the glyph with the
appropriate vertical baseline. If baseline tables are not available, user agents should establish baseline tables that
reflect common practice.

Adjustments to the current text position are either absolute position adjustments or relative position
adjustments. An absolute position adjustment occurs in the following circumstances:

● At the start of a 'text' element
● At the start of each 'textPath' element
● For each character within a 'text', 'tspan', 'tref' and 'altGlyph' element which has an x or y attribute value

assigned to it explicitly

All other position adjustments to the current text position are relative position adjustments.

Each absolute position adjustment defines a new text chunk. Absolute position adjustments impact text layout in
the following ways:

● Ligatures only occur when a set of characters which might map to a ligature are all in the same text chunk.
● Each text chunk represents a separate block of text for alignment due to 'text-anchor' property values.
● Reordering of characters due to bidirectionality only occurs within a text chunk. Reordering does not

happen across text chunks.

The following additional rules apply to ligature formation:

● As in [CSS2-spacing], when the resultant space between two characters is not the same as the default
space, user agents should not use ligatures; thus, if there are non-default values for properties 'kerning' or
'letter-spacing', the user agent should not use ligatures.

● Ligature formation should not be enabled for the glyphs corresponding to characters within different DOM
text nodes; thus, characters separated by markup should not use ligatures.

● As mentioned above, ligature formation should not be enabled for the glyphs corresponding to characters
within different text chunks.

10.7.2 Setting the inline-progression-direction

The 'writing-mode' property specifies whether the initial inline-progression-direction for a 'text' element shall be left-
to-right, right-to-left, or top-to-bottom. The 'writing-mode' property applies only to 'text' elements; the property is
ignored for 'tspan', 'tref', 'altGlyph' and 'textPath' sub-elements. (Note that the inline-progression-direction can
change within a 'text' element due to the Unicode bidirectional algorithm and properties 'direction' and 'unicode-

http://www.w3.org/TR/SVG/text.html (16 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#alignment
http://www.w3.org/TR/REC-CSS2/fonts.html#alignment
http://www.w3.org/TR/REC-CSS2/text.html#spacing-props

Text - SVG 1.1 - 20030114

bidi'. For more on bidirectional text, see Relationship with bidirectionality.)

'writing-mode'
Value: lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit
Initial: lr-tb
Applies to: 'text' elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no

lr-tb | lr
Sets the initial inline-progression-direction to left-to-right, as is common in most Latin-based documents.
For most characters, the current text position is advanced from left to right after each glyph is rendered.
(When the character data includes characters which are subject to the Unicode bidirectional algorithm, the
text advance rules are more complex. See Relationship with bidirectionality).

rl-tb | rl
Sets the initial inline-progression-direction to right-to-left, as is common in Arabic or Hebrew scripts. (See
Relationship with bidirectionality.)

tb-rl | tb
Sets the initial inline-progression-direction to top-to-bottom, as is common in some Asian scripts, such as
Chinese and Japanese. Though hardly as frequent as horizontal, this type of vertical layout also occurs in
Latin based documents, particularly in table column or row labels. In most cases, the vertical baselines
running through the middle of each glyph are aligned.

10.7.3 Glyph orientation within a text run

In some cases, it is required to alter the orientation of a sequence of characters relative to the inline-progression-
direction. The requirement is particularly applicable to vertical layouts of East Asian documents, where sometimes
narrow-cell Latin text is to be displayed horizontally and other times vertically.

Two properties control the glyph orientation relative to the reference orientation for each of the two possible inline-
progression-directions. 'glyph-orientation-vertical' controls glyph orientation when the inline-progression-direction
is vertical. 'glyph-orientation-horizontal' controls glyph orientation when the inline-progression-direction is
horizontal.

'glyph-orientation-vertical'
Value: auto | <angle> | inherit
Initial: auto
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no

auto
❍ Fullwidth ideographic and fullwidth Latin text will be set with a glyph-orientation of 0-degrees.

Ideographic punctuation and other ideographic characters having alternate horizontal and vertical
forms will use the vertical form of the glyph.

❍ Text which is not fullwidth will be set with a glyph-orientation of 90-degrees.

This reorientation rule applies only to the first-level non-ideographic text. All further embedding of
writing-modes or bidi processing will be based on the first-level rotation.

http://www.w3.org/TR/SVG/text.html (17 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Text - SVG 1.1 - 20030114

NOTE:
■ This is equivalent to having set the non-ideographic text string horizontally

honoring the bidi-rule, then rotating the resultant sequence of inline-areas (one
area for each change of glyph direction) 90-degrees clockwise.

It should be noted that text set in this "rotated" manner may contain ligatures or
other glyph combining and reordering common to the language and script. (This
"rotated" presentation form does not disable auto-ligature formation or similar
context-driven variations.)

■ The determination of which characters should be auto-rotated may vary across
user agents. The determination is based on a complex interaction between
country, language, script, character properties, font, and character context. It is
suggested that one consult the Unicode TR 11 and the various JIS or other
national standards.

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value of
the angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference orientation.

This property is applied only to text written in a vertical 'writing-mode'.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When
the inline-progression-direction is vertical and the 'glyph-orientation-vertical' results in an orientation angle that is a
multiple of 180 degrees, then the current text position is incremented according to the vertical metrics of the glyph.
Otherwise, if the 'glyph-orientation-vertical' results in an orientation angle that is not a multiple of 180 degrees,
then the current text position is incremented according to the horizontal metrics of the glyph.

The text layout diagrams in this section use the following symbols:

 - wide-cell glyph (e.g. Han) which is the n-th glyph in the text run

 - narrow-cell glyph (e.g. Latin) which is the n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the Unicode
characters they represent are intended to assume when rendered in the user agent. Spacing between the glyphs
in the diagrams is usually symbolic, unless intentionally changed to make a point.

The diagrams below illustrate different uses of 'glyph-orientation-vertical'. The diagram on the left shows the result
of the mixing of full-width ideographic glyphs with narrow-cell Latin glyphs when 'glyph-orientation-vertical' for the
Latin characters is either auto or 90. The diagram on the right show the result of mixing full-width ideographic
glyphs with narrow-cell Latin glyphs when Latin glyphs are specified to have a 'glyph-orientation-vertical' of 0.

http://www.w3.org/TR/SVG/text.html (18 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

'glyph-orientation-horizontal'
Value: <angle> | inherit
Initial: 0deg
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value of
the angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference orientation.

This property is applied only to text written in a horizontal 'writing-mode'.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When
the reference orientation direction is horizontal and the 'glyph-orientation-horizontal' results in an orientation angle
that is a multiple of 180 degrees, then the current text position is incremented according to the horizontal metrics
of the glyph. Otherwise, if the 'glyph-orientation-horizontal' results in an orientation angle that is not a multiple of
180 degrees, then the current text position is incremented according to the vertical metrics of the glyph.

10.7.4 Relationship with bidirectionality

The characters in certain scripts are written from right to left. In some documents, in particular those written with
the Arabic or Hebrew script, and in some mixed-language contexts, text in a single line may appear with mixed
directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], section 3.11) defines a complex algorithm for determining the proper
directionality of text. The algorithm consists of an implicit part based on character properties, as well as explicit
controls for embeddings and overrides. The SVG user agent applies this bidirectional algorithm when determining
the layout of characters within a 'text' element. The 'direction' and 'unicode-bidi' properties allow authors to
override the inherent directionality of the content characters and thus explicitly control how the elements and
attributes of a document language map to this algorithm. These two properties are applicable to all characters

http://www.w3.org/TR/SVG/text.html (19 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.unicode.org/unicode/standard/versions/

Text - SVG 1.1 - 20030114

whose glyphs are perpendicular to the inline-progression-direction.

In most cases, the bidirectional algorithm from [UNICODE] produces the desired result automatically, and
overriding this algorithm properly is usually quite complex. Therefore, in most cases, authors are discouraged
from assigning values to these properties.

A more complete discussion of bidirectionality can be found in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2-direction].

The processing model for bidirectional text is as follows. The user agent processes the characters which are
provided in logical order (i.e., the order the characters appear in the original document, either via direct inclusion
or via indirect reference due a 'tref' element). The user agent determines the set of independent blocks within
each of which it should apply the Unicode bidirectional algorithm. Each text chunk represents an independent
block of text. Additionally, any change in glyph orientation due to processing of properties 'glyph-orientation-
horizontal' or 'glyph-orientation-vertical' will subdivide the independent blocks of text further. After processing the
Unicode bidirectional algorithm and properties 'direction' and 'unicode-bidi' on each of the independent text
blocks, the user agent will have a potentially re-ordered list of characters which are now in left-to-right rendering
order. Simultaneous with re-ordering of the characters, the dx, dy and rotate attributes on the 'tspan' and 'tref'
elements are also re-ordered to maintain the original correspondence between characters and attribute values.
While kerning or ligature processing might be font-specific, the preferred model is that kerning and ligature
processing occurs between combinations of characters or glyphs after the characters have been re-ordered.

'direction'
Value: ltr | rtl | inherit
Initial: ltr
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see
'unicode-bidi') for the Unicode bidirectional algorithm. For the 'direction' property to have any effect, the 'unicode-
bidi' property's value must be 'embed' or 'bidi-override'.

Except for any additional information provided in this specification, the normative definition of the property is in
[CSS2-direction].

The 'direction' property applies only to glyphs oriented perpendicular to the inline-progression-direction, which
includes the usual case of horizontally-oriented Latin or Arabic text and the case of narrow-cell Latin or Arabic
characters rotated 90 degrees clockwise relative to a top-to-bottom inline-progression-direction.

'unicode-bidi'
Value: normal | embed | bidi-override | inherit
Initial: normal
Applies to: text content elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: no

Except for any additional information provided in this specification, the normative definition of the property is in
[CSS2-unicode-bidi].

http://www.w3.org/TR/SVG/text.html (20 of 28)4/2/07 7:16 PM

http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/REC-CSS2/visuren.html#direction
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-direction
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-unicode-bidi

Text - SVG 1.1 - 20030114

10.8 Text rendering order

The glyphs associated with the characters within a 'text' element are rendered in the logical order of the
characters in the original document, independent of any re-ordering necessary to implement bidirectionality. Thus,
for text that goes right-to-left visually, the glyphs associated with the rightmost character are rendered before the
glyphs associated with the other characters.

Additionally, each distinct glyph is rendered in its entirety (i.e., it is filled and stroked as specified by the 'fill' and
'stroke' properties) before the next glyph gets rendered.

10.9 Alignment properties

10.9.1 Text alignment properties

The 'text-anchor' property is used to align (start-, middle- or end-alignment) a string of text relative to a given point.

The 'text-anchor' property is applied to each individual text chunk within a given 'text' element. Each text chunk
has an initial current text position, which represents the point in the user coordinate system resulting from
(depending on context) application of the x and y attributes on the 'text' element, any x or y attribute values on a
'tspan', 'tref' or 'altGlyph' element assigned explicitly to the first rendered character in a text chunk, or
determination of the initial current text position for a 'textPath' element.

'text-anchor'
Value: start | middle | end | inherit
Initial: start
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Values have the following meanings:

start
The rendered characters are aligned such that the start of the text string is at the initial current text position.
For Latin or Arabic, which is usually rendered horizontally, this is comparable to left alignment. For Asian
text with a vertical primary text direction, this is comparable to top alignment.

middle
The rendered characters are aligned such that the middle of the text string is at the current text position.
(For text on a path, conceptually the text string is first laid out in a straight line. The midpoint between the
start of the text string and the end of the text string is determined. Then, the text string is mapped onto the
path with this midpoint placed at the current text position.)

end
The rendered characters are aligned such that the end of the text string is at the initial current text position.
For Latin text in its usual orientation, this is comparable to right alignment.

10.9.2 Baseline alignment properties

An overview of baseline alignment and baseline tables can be found above in Fonts, font tables and baselines.

One of the characteristics of international text is that there are different baselines (different alignment points) for
glyphs in different scripts. For example, in horizontal writing, ideographic scripts, such as Han Ideographs,
Katakana, Hiragana, and Hangul, alignment occurs with a baseline near the bottoms of the glyphs; alphabetic
based scripts, such as Latin, Cyrillic, Hebrew, Arabic, align a point that is the bottom of most glyphs, but some

http://www.w3.org/TR/SVG/text.html (21 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Text - SVG 1.1 - 20030114

glyphs descend below the baseline; and Indic based scripts are aligned at a point that is near the top of the glyphs.

When different scripts are mixed on a line of text, an adjustment must be made to ensure that the glyphs in the
different scripts are aligned correctly with one another. OpenType [OPENTYPE] fonts have a Baseline table
(BASE) [OPENTYPE-BASETABLE] that specifies the offsets of the alternative baselines from the current baseline.

SVG uses a similar baseline table model that assumes one script (at one font-size) is the "dominant run" during
processing of a 'text' element; that is, all other baselines are defined in relation to this dominant run. The baseline
of the script with the dominant run is called the dominant baseline. So, for example, if the dominant baseline is
the alphabetic baseline, there will be offsets in the baseline table for the alternate baselines, such as the
ideographic baseline and the Indic baseline. There will also be an offset for the math baseline which is used for
some math fonts. Note that there are separate baseline tables for horizontal and vertical writing-modes. The
offsets in these tables may be different for horizontal and vertical writing.

The baseline table established at the start of processing of a 'text' element is called the dominant baseline table.

Because the value of the 'font-family' property is a list of fonts, to insure a consistent choice of baseline table we
define the nominal font in a font list as the first font in the list for which a glyph is available. This is the first font that
could contain a glyph for each character encountered. (For this definition, glyph data is assumed to be present if a
font substitution is made or if the font is synthesized.) This definition insures a content independent determination
of the font and baseline table that is to be used.

The value of the 'font-size' property on the 'text' element establishes the dominant baseline table font size.

The model assumes that each glyph has a 'alignment-baseline' value which specifies the baseline with which the
glyph is to be aligned. (The 'alignment-baseline' is called the "Baseline Tag" in the OpenType baseline table
description.) The initial value of the 'alignment-baseline' property uses the baseline identifier associated with the
given glyph. Alternate values for 'alignment-baseline' can be useful for glyphs such as a "*" which are ambiguous
with respect to script membership.

The model assumes that the font from which the glyph is drawn also has a baseline table, the font baseline
table. This baseline table has offsets in units-per-em from the (0,0) point to each of the baselines the font knows
about. In particular, it has the offset from the glyph's (0,0) point to the baseline identified by the 'alignment-
baseline'.

The offset values in the baseline table are in "design units" which means fractional units of the EM. CSS calls
these "units-per-em" [CSS2-UNITSPEREM]. Thus, the current 'font-size' is used to determine the actual offset
from the dominant baseline to the alternate baselines.

The glyph is aligned so that its baseline identified by its 'alignment-baseline' is aligned with the baseline with the
same name from the dominant baseline table.

The offset from the dominant baseline of the parent to the baseline identified by the 'alignment-baseline' is
computed using the dominant baseline table and dominant baseline table font size. The font baseline table and
font size applicable to the glyph are used to compute the offset from the identified baseline to the (0,0) point of the
glyph. This second offset is subtracted from the first offset to get the position of the (0,0) point in the shift
direction. Both offsets are computed by multiplying the baseline value from the baseline table times the
appropriate font size value.

If the 'alignment-baseline' identifies the dominant baseline, then the first offset is zero and the glyph is aligned with
the dominant baseline; otherwise, the glyph is aligned with the chosen alternate baseline.

The baseline-identifiers below are used in this specification. Some of these are determined by baseline-tables
contained in a font as described in [XSL description of Fonts and Font Data]. Others are computed from other
font characteristics as described below.

http://www.w3.org/TR/SVG/text.html (22 of 28)4/2/07 7:16 PM

http://www.microsoft.com/OpenType/OTSpec/
http://www.microsoft.com/OpenType/OTSpec/base.htm
http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem
http://www.w3.org/TR/xsl/slice7.html#font-model

Text - SVG 1.1 - 20030114

alphabetic

This identifies the baseline used by most alphabetic and syllabic scripts. These include, but are not limited
to, many Western, Southern Indic, Southeast Asian (non-ideographic) scripts.

ideographic

This identifies the baseline used by ideographic scripts. For historical reasons, this baseline is at the bottom
of the ideographic EM box and not in the center of the ideographic EM box. See the "central" baseline. The
ideographic scripts include Chinese, Japanese, Korean, and Vietnamese Chu Nom.

hanging

This identifies the baseline used by certain Indic scripts. These scripts include Devanagari, Gurmukhi and
Bengali.

mathematical

This identifies the baseline used by mathematical symbols.

central

This identifies a computed baseline that is at the center of the EM box. This baseline lies halfway between
the text-before-edge and text-after-edge baselines.

NOTE:

For ideographic fonts, this baseline is often used to align the glyphs; it is an alternative to the
ideographic baseline.

middle

This identifies a baseline that is offset from the alphabetic baseline in the shift-direction by 1/2 the value of
the x-height font characteristic. The position of this baseline may be obtained from the font data or, for fonts
that have a font characteristic for "x-height", it may be computed using 1/2 the "x-height". Lacking either of
these pieces of information, the position of this baseline may be approximated by the "central" baseline.

text-before-edge

This identifies the before-edge of the EM box. The position of this baseline may be specified in the baseline-
table or it may be calculated.

NOTE:

The position of this baseline is normally around or at the top of the ascenders, but it may not
encompass all accents that can appear above a glyph. For these fonts the value of the "ascent" font
characteristic is used. For ideographic fonts, the position of this baseline is normally 1 EM in the
shift-direction from the "ideographic" baseline. However, some ideographic fonts have a reduced
width in the inline-progression-direction to allow tighter setting. When such a font, designed only for
vertical writing-modes, is used in a horizontal writing-mode, the "text-before-edge" baseline may be
less than 1 EM from the text-after-edge.

text-after-edge

This identifies the after-edge of the EM box. The position of this baseline may be specified in the baseline-

http://www.w3.org/TR/SVG/text.html (23 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

table or it may be calculated.

NOTE:

For fonts with descenders, the position of this baseline is normally around or at the bottom of the
descenders. For these fonts the value of the "descent" font characteristic is used. For ideographic
fonts, the position of this baseline is normally at the "ideographic" baseline.

There are, in addition, two computed baselines that are only defined for line areas. Since SVG does not support
the notion of computations based on line areas, the two computed baselines are mapped as follows:

before-edge
For SVG, this is equivalent to text-before-edge.

after-edge
For SVG, this is equivalent to text-after-edge.

There are also four baselines that are defined only for horizontal writing-modes.

top

This baseline is the same as the "before-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

text-top

This baseline is the same as the "text-before-edge" baseline in a horizontal writing-mode and is undefined
in a vertical writing mode.

bottom

This baseline is the same as the "after-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

text-bottom

This baseline is the same as the "text-after-edge" baseline in a horizontal writing-mode and is undefined in
a vertical writing mode.

The baseline-alignment properties follow.

'dominant-baseline'
Value: auto | use-script | no-change | reset-size | ideographic | alphabetic | hanging | | mathematical

| central | middle | text-after-edge | text-before-edge | inherit
Initial: auto
Applies to: text content elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

The "dominant-baseline" property is used to determine or re-determine a scaled-baseline-table. A scaled-baseline-
table is a compound value with three components: a baseline-identifier for the dominant-baseline, a baseline-table
and a baseline-table font-size. Some values of the property re-determine all three values; other only re-establish

http://www.w3.org/TR/SVG/text.html (24 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Text - SVG 1.1 - 20030114

the baseline-table font-size. When the initial value, "auto", would give an undesired result, this property can be
used to explicitly set the desire scaled-baseline-table.

Values for the property have the following meaning:

auto

If this property occurs on a 'text' element, then the computed value depends on the value of the 'writing-
mode' property. If the 'writing-mode' is horizontal, then the value of the dominant-baseline component is
'alphabetic', else if the 'writing-mode' is vertical, then the value of the dominant-baseline component is
'central'.

If this property occurs on a 'tspan', 'tref', 'altGlyph' or 'textPath' element, then the dominant-baseline and the
baseline-table components remain the same as those of the parent text content element. If the computed
'baseline-shift' value actually shifts the baseline, then the baseline-table font-size component is set to the
value of the 'font-size' property on the element on which the 'dominant-baseline' property occurs, otherwise
the baseline-table font-size remains the same as that of the element. If there is no parent text content
element, the scaled-baseline-table value is constructed as above for 'text' elements.

use-script
The dominant-baseline and the baseline-table components are set by determining the predominant script of
the character data content. The 'writing-mode', whether horizontal or vertical, is used to select the
appropriate set of baseline-tables and the dominant baseline is used to select the baseline-table that
corresponds to that baseline. The baseline-table font-size component is set to the value of the 'font-size'
property on the element on which the 'dominant-baseline' property occurs.

no-change
The dominant-baseline, the baseline-table, and the baseline-table font-size remain the same as that of the
parent text content element.

reset-size
The dominant-baseline and the baseline-table remain the same, but the baseline-table font-size is changed
to the value of the 'font-size' property on this element. This re-scales the baseline-table for the current 'font-
size'.

ideographic
The baseline-identifier for the dominant-baseline is set to be 'ideographic', the derived baseline-table is
constructed using the 'ideographic' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

alphabetic
The baseline-identifier for the dominant-baseline is set to be 'alphabetic', the derived baseline-table is
constructed using the 'alphabetic' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

hanging
The baseline-identifier for the dominant-baseline is set to be 'hanging', the derived baseline-table is
constructed using the 'hanging' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

mathematical
The baseline-identifier for the dominant-baseline is set to be 'mathematical', the derived baseline-table is
constructed using the 'mathematical' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

central
The baseline-identifier for the dominant-baseline is set to be 'central'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. That font baseline-table is
chosen using the following priority order of baseline-table names: 'ideographic', 'alphabetic', 'hanging',
'mathematical'. The baseline-table font-size is changed to the value of the 'font-size' property on this
element.

middle
The baseline-identifier for the dominant-baseline is set to be 'middle'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. That font baseline -table is

http://www.w3.org/TR/SVG/text.html (25 of 28)4/2/07 7:16 PM

Text - SVG 1.1 - 20030114

chosen using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging',
'mathematical'. The baseline-table font-size is changed to the value of the 'font-size' property on this
element.

text-after-edge
The baseline-identifier for the dominant-baseline is set to be 'text-after-edge'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. The choice of which font
baseline-table to use from the baseline-tables in the nominal font is implementation defined. The baseline-
table font-size is changed to the value of the 'font-size' property on this element.

NOTE: using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging',
'mathematical' is probably a reasonable strategy for determining which font baseline-table to use.

text-before-edge
The baseline-identifier for the dominant-baseline is set to be 'text-before-edge'. The derived baseline-table
is constructed from the defined baselines in a baseline-table in the nominal font. The choice of which
baseline-table to use from the baseline-tables in the nominal font is implementation defined. The baseline-
table font-size is changed to the value of the 'font-size' property on this element.

NOTE: Using the following priority order of baseline-table names: 'alphabetic', 'ideographic', 'hanging',
'mathematical' is probably a reasonable strategy for determining which font baseline-table to use.

If there is no baseline table in the nominal font or if the baseline table lacks an entry for the desired baseline, then
the user agent may use heuristics to determine the position of the desired baseline.

'alignment-baseline'
Value: auto | baseline | before-edge | text-before-edge | middle | central | after-edge | text-after-edge

| ideographic | alphabetic | hanging | mathematical | inherit
Initial: auto
Applies to: 'tspan', 'tref', 'altGlyph', 'textPath' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

This property specifies how an object is aligned with respect to its parent. This property specifies which baseline
of this element is to be aligned with the corresponding baseline of the parent. For example, this allows alphabetic
baselines in Roman text to stay aligned across font size changes. It defaults to the baseline with the same name
as the computed value of the alignment-baseline property. That is, the position of "ideographic" alignment-point in
the block-progression-direction is the position of the "ideographic" baseline in the baseline-table of the object
being aligned.

Values have the following meanings:

auto
The value is the dominant-baseline of the script to which the character belongs - i.e., use the dominant-
baseline of the parent.

baseline
The alignment-point of the object being aligned is aligned with the dominant-baseline of the parent text
content element.

before-edge
The alignment-point of the object being aligned is aligned with the "before-edge" baseline of the parent text
content element.

text-before-edge
The alignment-point of the object being aligned is aligned with the "text-before-edge" baseline of the parent
text content element.

middle

http://www.w3.org/TR/SVG/text.html (26 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Text - SVG 1.1 - 20030114

The alignment-point of the object being aligned is aligned with the "middle" baseline of the parent text
content element.

central
The alignment-point of the object being aligned is aligned with the "central" baseline of the parent text
content element.

after-edge
The alignment-point of the object being aligned is aligned with the "after-edge" baseline of the parent text
content element.

text-after-edge
The alignment-point of the object being aligned is aligned with the "text-after-edge" baseline of the parent
text content element.

ideographic
The alignment-point of the object being aligned is aligned with the "ideographic" baseline of the parent text
content element.

alphabetic
The alignment-point of the object being aligned is aligned with the "alphabetic" baseline of the parent text
content element.

hanging
The alignment-point of the object being aligned is aligned with the "hanging" baseline of the parent text
content element.

mathematical
The alignment-point of the object being aligned is aligned with the "mathematical" baseline of the parent
text content element.

'baseline-shift'
Value: baseline | sub | super | <percentage> | <length> | inherit
Initial: baseline
Applies to: 'tspan', 'tref', 'altGlyph', 'textPath' elements
Inherited: no
Percentages: refers to the "line-height" of the 'text' element, which in the case of SVG is defined to be

equal to the 'font-size'
Media: visual
Animatable: yes

The 'baseline-shift' property allows repositioning of the dominant-baseline relative to the dominant-baseline of the
parent text content element. The shifted object might be a sub- or superscript. Within the shifted object, the whole
baseline-table is offset; not just a single baseline. The amount of the shift is determined from information from the
parent text content element, the sub- or superscript offset from the nominal font of the parent text content
element, percent of the "line-height" of the parent text content element or an absolute value.

In SVG, the 'baseline-shift' property represents a supplemental adjustment to the baseline tables. The 'baseline-
shift' property shifts the baseline tables for each glyph to temporary new positions, for example to lift the glyph
into superscript or subscript position, but it does not effect the current text position. When the current text position
is adjusted after rendering a glyph to take into account glyph advance values, the adjustment happens as if there
were no baseline shift.

'baseline-shift' properties can nest. Each nested 'baseline-shift' is added to previous baseline shift values.

Values for the property have the following meaning:

baseline
There is no baseline shift; the dominant-baseline remains in its original position.

http://www.w3.org/TR/SVG/text.html (27 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Text - SVG 1.1 - 20030114

sub
The dominant-baseline is shifted to the default position for subscripts. The offset to this position is
determined using the font data for the nominal font. Because in most fonts the subscript position is normally
given relative to the "alphabetic" baseline, the user agent may compute the effective position for subscripts
for superscripts when some other baseline is dominant. The suggested computation is to subtract the
difference between the position of the dominant baseline and the position of the "alphabetic" baseline from
the position of the subscript. The resulting offset is determined by multiplying the effective subscript position
by the dominant baseline-table font-size. If there is no applicable font data the user agent may use
heuristics to determine the offset.

super
The dominant-baseline is shifted to the default position for superscripts. The offset to this position is
determined using the font data for the nominal font. Because in most fonts the superscript position is
normally given relative to the "alphabetic" baseline, the user agent may compute the effective position for
superscripts when some other baseline is dominant. The suggested computation is to subtract the
difference between the position of the dominant baseline and the position of the "alphabetic" baseline from
the position of the superscript. The resulting offset is determined by multiplying the effective superscript
position by the dominant baseline-table font-size. If there is no applicable font data the user agent may use
heuristics to determine the offset.

<percentage>
The computed value of the property is this percentage multiplied by the computed "line-height" of the 'text'
element. The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift
direction (negative value) of the parent text content element by the computed value. A value of "0%" is
equivalent to "baseline".

<length>
The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direction
(negative value) of the parent text content element by the <length> value. A value of "0cm" is equivalent to
"baseline".

10.10 Font selection properties

SVG uses the following font specification properties. Except for any additional information provided in this
specification, the normative definition of the property is in [CSS2-fonts]. Any SVG-specific notes about these
properties are contained in the descriptions below.

'font-family'
Value: [[<family-name> |

<generic-family>],]* [<family-name> |
<generic-family>] | inherit

Initial: depends on user agent
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

http://www.w3.org/TR/SVG/text.html (28 of 28)4/2/07 7:16 PM

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

11 Painting: Filling, Stroking and Marker Symbols

Contents

● 11.1 Introduction
● 11.2 Specifying paint
● 11.3 Fill Properties
● 11.4 Stroke Properties
● 11.5 Controlling visibility
● 11.6 Markers

❍ 11.6.1 Introduction
❍ 11.6.2 The 'marker' element
❍ 11.6.3 Marker properties
❍ 11.6.4 Details on how markers are rendered

● 11.7 Rendering properties
❍ 11.7.1 Color interpolation properties: 'color-interpolation' and 'color-interpolation-filters'

❍ 11.7.2 The 'color-rendering' property
❍ 11.7.3 The 'shape-rendering' property
❍ 11.7.4 The 'text-rendering' property
❍ 11.7.5 The 'image-rendering' property

● 11.8 Inheritance of painting properties
● 11.9 Paint Attribute Module
● 11.10 Basic Paint Attribute Module
● 11.11 Opacity Attribute Module
● 11.12 Graphics Attribute Module
● 11.13 Basic Graphics Attribute Module
● 11.14 Marker Module
● 11.15 DOM interfaces

11.1 Introduction

'path' elements, 'text' elements and basic shapes can be filled (which means painting the interior of the object) and
stroked (which means painting along the outline of the object). Filling and stroking both can be thought of in more
general terms as painting operations.

Certain elements (i.e., 'path', 'polyline', 'polygon' and 'line' elements) can also have marker symbols drawn at their
vertices.

With SVG, you can paint (i.e., fill or stroke) with:

http://www.w3.org/TR/SVG/painting.html (1 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

● a single color
● a solid color with opacity
● a gradient (linear or radial)
● a pattern (vector or image, possibly tiled)
● custom paints available via extensibility

SVG uses the general notion of a paint server. Paint servers are specified using a URI reference on a 'fill' or 'stroke'
property. Gradients, patterns and solid colors are just specific types of paint servers.

11.2 Specifying paint

Properties 'fill' and 'stroke' take on a value of type <paint>, which is specified as follows:

<paint>: none |
currentColor |
<color> [icc-color(<name>[,<icccolorvalue>]*)] |
<uri> [none | currentColor | <color> [icc-color(<name>[,<icccolorvalue>]*)]] |
inherit

none
Indicates that no paint is applied.

currentColor
Indicates that painting is done using the color specified by the 'color' property. This mechanism is provided to
facilitate sharing of color attributes between parent grammars such as other (non-SVG) XML. This mechanism
allows you to define a style in your HTML which sets the 'color' property and then pass that style to the SVG
user agent so that your SVG text will draw in the same color.

<color> [icc-color(<name>[,<icccolorvalue>]*)]
<color> is the explicit color (in the sRGB [SRGB] color space) to be used to paint the current object. SVG
supports all of the syntax alternatives for <color> defined in [CSS2-color-types], with the exception that SVG
contains an expanded list of recognized color keywords names. If an optional ICC color specification is
provided, then the user agent searches the color profile description database for a color profile description
entry whose name descriptor matches <name> and uses the last matching entry that is found. (If no match is
found, then the ICC color specification is ignored.) The comma-separated list (with optional white space) of
<icccolorvalue>'s is a set of ICC-profile-specific color values, expressed as <number>s. (In most cases, the
<icccolorvalue>'s will be in the range 0-to-1.) On platforms which support ICC-based color management, the
icc-color gets precedence over the <color> (which is in the sRGB color space). Note that color interpolation
occurs in an RGB color space even if an ICC-based color specification is provided (see 'color-interpolation'
and 'color-interpolation-filters'). Percentages are not allowed on <icccolorvalue>'s. For more on ICC-based
colors, refer to Color profile descriptions.

<uri>
 [none |
 currentColor |
 <color> [icc-color(<name>[,<icccolorvalue>]*)]

The <uri> is how you identify a paint server such as a gradient, a pattern or a custom paint defined by an
extension (see Extensibility). The <uri> provides the ID of the paint server (e.g., a gradient, pattern or solid
color) to be used to paint the current object. If the URI reference is not valid (e.g., it points to an object that
doesn't exist or the object is not a valid paint server), then the paint method following the <uri> (i.e., none |
currentColor | <color> [icc-color(<name>[,<icccolorvalue>]*)]| inherit) is used if provided; otherwise, the
document is in error (see Error processing).

11.3 Fill Properties

'fill'
Value: <paint> (See Specifying paint)
Initial: black

http://www.w3.org/TR/SVG/painting.html (2 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/extend.html
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/SVG/extend.html
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

The 'fill' property paints the interior of the given graphical element. The area to be painted consists of any areas
inside the outline of the shape. To determine the inside of the shape, all subpaths are considered, and the interior is
determined according to the rules associated with the current value of the 'fill-rule' property. The zero-width
geometric outline of a shape is included in the area to be painted.

The fill operation fills open subpaths by performing the fill operation as if an additional "closepath" command were
added to the path to connect the last point of the subpath with the first point of the subpath. Thus, fill operations apply
to both open subpaths within 'path' elements (i.e., subpaths without a closepath command) and 'polyline' elements.

.

'fill-rule'
Value: nonzero | evenodd | inherit
Initial: nonzero
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

The 'fill-rule' property indicates the algorithm which is to be used to determine what parts of the canvas are included
inside the shape. For a simple, non-intersecting path, it is intuitively clear what region lies "inside"; however, for a
more complex path, such as a path that intersects itself or where one subpath encloses another, the interpretation of
"inside" is not so obvious.

The 'fill-rule' property provides two options for how the inside of a shape is determined:

nonzero
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any
direction and then examining the places where a segment of the shape crosses the ray. Starting with a count
of zero, add one each time a path segment crosses the ray from left to right and subtract one each time a path
segment crosses the ray from right to left. After counting the crossings, if the result is zero then the point is
outside the path. Otherwise, it is inside. The following drawing illustrates the nonzero rule:

View this example as SVG (SVG-enabled browsers only)

evenodd
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any
direction and counting the number of path segments from the given shape that the ray crosses. If this number
is odd, the point is inside; if even, the point is outside. The following drawing illustrates the evenodd rule:

http://www.w3.org/TR/SVG/painting.html (3 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/images/painting/fillrule-nonzero.svg

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

View this example as SVG (SVG-enabled browsers only)

(Note: the above explanations do not specify what to do if a path segment coincides with or is tangent to the ray.
Since any ray will do, one may simply choose a different ray that does not have such problem intersections.)

'fill-opacity'
Value: <opacity-value> | inherit
Initial: 1
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

'fill-opacity' specifies the opacity of the painting operation used to paint the interior the current object. (See Painting
shapes and text.)

<opacity-value>
The opacity of the painting operation used to fill the current object. Any values outside the range 0.0 (fully
transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which are restricted to a
particular range.)

Related properties: 'stroke-opacity' and 'opacity'.

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.

In all cases, all stroking properties which are affected by directionality, such as those having to do with dash patterns,
must be rendered such that the stroke operation starts at the same point at which the graphics element starts. In
particular, for 'path' elements, the start of the path is the first point of the initial "moveto" command.

For stroking properties such as dash patterns whose computations are dependent on progress along the outline of
the graphics element, distance calculations are required to utilize the SVG user agent's standard Distance along a
path algorithms.

When stroking is performed using a complex paint server, such as a gradient or a pattern, the stroke operation must
be identical to the result that would have occurred if the geometric shape defined by the geometry of the current
graphics element and its associated stroking properties were converted to an equivalent 'path' element and then filled
using the given paint server.

'stroke'
Value: <paint> (See Specifying paint)
Initial: none
Applies to: shapes and text content elements

http://www.w3.org/TR/SVG/painting.html (4 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/images/painting/fillrule-evenodd.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#RangeClamping
http://www.w3.org/TR/SVG/implnote.html#RangeClamping

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

The 'stroke' property paints along the outline of the given graphical element.

A subpath (see Paths) consisting of a single moveto is not stroked. A subpath consisting of a moveto and lineto to
the same exact location or a subpath consisting of a moveto and a closepath will be stroked only if the 'stroke-linecap'
property is set to "round", producing a circle centered at the given point.

'stroke-width'

Value: <length> | inherit
Initial: 1
Applies to: shapes and text content elements
Inherited: yes
Percentages: Yes
Media: visual
Animatable: yes

<length>
The width of the stroke on the current object. If a percentage is used, the value represents a percentage of the
current viewport. (See Units.)
A zero value causes no stroke to be painted. A negative value is an error (see Error processing).

'stroke-linecap'

Value: butt | round | square | inherit
Initial: butt
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

'stroke-linecap' specifies the shape to be used at the end of open subpaths when they are stroked.

butt
See drawing below.

round
See drawing below.

square
See drawing below.

View this example as SVG (SVG- and CSS-enabled browsers only)

'stroke-linejoin'

Value: miter | round | bevel | inherit
Initial: miter

http://www.w3.org/TR/SVG/painting.html (5 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/images/painting/linecap.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

'stroke-linejoin' specifies the shape to be used at the corners of paths or basic shapes when they are stroked.

miter
See drawing below.

round
See drawing below.

bevel
See drawing below.

View this example as SVG (SVG- and CSS-enabled browsers only)

'stroke-miterlimit'

Value: <miterlimit> | inherit
Initial: 4
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-linejoin', it is possible
for the miter to extend far beyond the thickness of the line stroking the path. The 'stroke-miterlimit' imposes a limit on
the ratio of the miter length to the 'stroke-width'. When the limit is exceeded, the join is converted from a miter to a
bevel.

<miterlimit>
The limit on the ratio of the miter length to the 'stroke-width'. The value of <miterlimit> must be a number
greater than or equal to 1. Any other value is an error (see Error processing).

The ratio of miter length (distance between the outer tip and the inner corner of the miter) to 'stroke-width' is directly
related to the angle (theta) between the segments in user space by the formula:

miterLength / stroke-width = 1 / sin (theta / 2)

For example, a miter limit of 1.414 converts miters to bevels for theta less than 90 degrees, a limit of 4.0 converts
them for theta less than approximately 29 degrees, and a limit of 10.0 converts them for theta less than
approximately 11.5 degrees.

'stroke-dasharray'

http://www.w3.org/TR/SVG/painting.html (6 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/images/painting/linejoin.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Value: none | <dasharray> | inherit
Initial: none
Applies to: shapes and text content elements
Inherited: yes
Percentages: yes (see below)
Media: visual
Animatable: yes (non-additive)

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. <dasharray> contains a list of
comma-separated (with optional white space) <length>s that specify the lengths of alternating dashes and gaps. If an
odd number of values is provided, then the list of values is repeated to yield an even number of values. Thus, stroke-
dasharray: 5,3,2 is equivalent to stroke-dasharray: 5,3,2,5,3,2.

none
Indicates that no dashing is used. If stroked, the line is drawn solid.

<dasharray>
A list of comma-separated <length>'s (with optional white space), each of which can have a unit identifier ,
including specification of a percentage. A percentage represents a distance as a percentage of the current
viewport. (See Units.) A negative <length> value is an error (see Error processing). If the sum of the <length>'s
is zero, then the stroke is rendered as if a value of none were specified.

'stroke-dashoffset'

Value: <length> | inherit
Initial: 0
Applies to: shapes and text content elements
Inherited: yes
Percentages: see prose
Media: visual
Animatable: yes

'stroke-dashoffset' specifies the distance into the dash pattern to start the dash.

<length>
If a percentage is used, the value represents a percentage of the current viewport
(See Units.)
Values can be negative.

'stroke-opacity'

Value: <opacity-value> | inherit
Initial: 1
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

'stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (See Painting shapes
and text.)

<opacity-value>
The opacity of the painting operation used to stroke the current object. Any values outside the range 0.0 (fully
transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which are restricted to a
particular range.)

http://www.w3.org/TR/SVG/painting.html (7 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#RangeClamping
http://www.w3.org/TR/SVG/implnote.html#RangeClamping

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Related properties: 'fill-opacity' and 'opacity'.

11.5 Controlling visibility

SVG uses two properties, 'display' and 'visibility', to control the visibility of graphical elements or (in the case of the
'display' property) container elements.

The differences between the two properties are as follows:

● When applied to a container element, setting 'display' to none causes the container and all of its children to be
invisible; thus, it acts on groups of elements as a group. 'visibility', however, only applies to individual graphics
elements. Setting 'visibility' to hidden on a 'g' will make its children invisible as long as the children do not
specify their own 'visibility' properties as visible. Note that 'visibility' is not an inheritable property.

● When the 'display' property is set to none, then the given element does not become part of the rendering tree.
With 'visibility' set to hidden, however, processing occurs as if the element were part of the rendering tree and
still taking up space, but not actually rendered onto the canvas. This distinction has implications for the 'tspan',
'tref' and 'altGlyph' elements, event processing, for bounding box calculations and for calculation of clipping
paths. If 'display' is set to none on a 'tspan', 'tref' or 'altGlyph' element, then the text string is ignored for the
purposes of text layout; however, if 'visibility' is set to hidden, the text string is used for text layout (i.e., it takes
up space) even though it is not rendered on the canvas. Regarding events, if 'display' is set to none, the
element receives no events; however, if 'visibility' is set to hidden, the element might still receive events,
depending on the value of property 'pointer-events'. The geometry of a graphics element with 'display' set to
none is not included in bounding box and clipping paths calculations; however, even if 'visibility' is to hidden,
the geometry of the graphics element still contributes to bounding box and clipping path calculations.

'display'
Value: inline | block | list-item |

run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline
Applies to: 'svg', 'g', 'switch', 'a', 'foreignObject', graphics elements (including the 'text' element) and text

sub-elements (i.e., 'tspan', 'tref', 'altGlyph', 'textPath')
Inherited: no
Percentages: N/A
Media: all
Animatable: yes

A value of display: none indicates that the given element and its children shall not be rendered directly (i.e., those
elements are not present in the rendering tree). Any value other than none or inherit indicates that the given element
shall be rendered by the SVG user agent.

The 'display' property only affects the direct rendering of a given element, whereas it does not prevent elements from
being referenced by other elements. For example, setting display: none on a 'path' element will prevent that element
from getting rendered directly onto the canvas, but the 'path' element can still be referenced by a 'textPath' element;
furthermore, its geometry will be used in text-on-a-path processing even if the 'path' has display: none.

The 'display' property affects direct rendering into offscreen canvases also, such as occurs with the implementation
model for masks. Thus, setting display: none on a child of a 'mask' will prevent the given child element from being
rendered as part of the mask. Similarly, setting display: none on a child of a 'clipPath' element will prevent the given
child element from contributing to the clipping path.

Elements with display: none do not take up space in text layout operations, do not receive events, and do not
contribute to bounding box and clipping paths calculations.

http://www.w3.org/TR/SVG/painting.html (8 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Except for any additional information provided in this specification, the normative definition is the CSS2 definition of
the 'display' property.

'visibility'
Value: visible | hidden | collapse | inherit
Initial: visible
Applies to: graphics elements (including the 'text' element) and text sub-elements (i.e., 'tspan', 'tref',

'altGlyph', 'textPath' and 'a')
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

visible
The current graphics element is visible.

hidden or collapse
The current graphics element is invisible (i.e., nothing is painted on the canvas).

Note that if the 'visibility' property is set to hidden on a 'tspan', 'tref' or 'altGlyph' element, then the text is invisible but
still takes up space in text layout calculations.

Depending on the value of property 'pointer-events', graphics elements which have their 'visibility' property set to
hidden still might receive events.

Except for any additional information provided in this specification, the normative definition is the CSS2 definition of
the 'visibility' property.

11.6 Markers

11.6.1 Introduction

A marker is a symbol which is attached to one or more vertices of 'path', 'line', 'polyline' and 'polygon' elements.
Typically, markers are used to make arrowheads or polymarkers. Arrowheads can be defined by attaching a marker
to the start or end vertices of 'path', 'line' or 'polyline' elements. Polymarkers can be defined by attaching a marker to
all vertices of a 'path', 'line', 'polyline' or 'polygon' element.

The graphics for a marker are defined by a 'marker' element. To indicate that a particular 'marker' element should be
rendered at the vertices of a particular 'path', 'line', 'polyline' or 'polygon' element, set one or more marker properties
('marker', 'marker-start', 'marker-mid' or 'marker-end') to reference the given 'marker' element.

Example Marker draws a triangular marker symbol as an arrowhead at the end of a path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"
 viewBox="0 0 4000 2000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <defs>
 <marker id="Triangle"
 viewBox="0 0 10 10" refX="0" refY="5"
 markerUnits="strokeWidth"
 markerWidth="4" markerHeight="3"
 orient="auto">
 <path d="M 0 0 L 10 5 L 0 10 z" />
 </marker>
 </defs>

http://www.w3.org/TR/SVG/painting.html (9 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

 <rect x="10" y="10" width="3980" height="1980"
 fill="none" stroke="blue" stroke-width="10" />
 <desc>Placing an arrowhead at the end of a path.
 </desc>
 <path d="M 1000 750 L 2000 750 L 2500 1250"
 fill="none" stroke="black" stroke-width="100"
 marker-end="url(#Triangle)" />
</svg>

Example Marker

View this example as SVG (SVG-enabled browsers only)

Markers can be animated. The animated effects will show on all current uses of the markers within the document.

11.6.2 The 'marker' element

The 'marker' element defines the graphics that is to be used for drawing arrowheads or polymarkers on a given
'path', 'line', 'polyline' or 'polygon' element.

<!ENTITY % SVG.marker.extra.content "" >
<!ENTITY % SVG.marker.element "INCLUDE" >
<![%SVG.marker.element;[
<!ENTITY % SVG.marker.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.marker.extra.content;)*"

>
<!ELEMENT %SVG.marker.qname; %SVG.marker.content; >

<!-- end of SVG.marker.element -->]]>

Attribute definitions:

markerUnits = "strokeWidth | userSpaceOnUse"
Defines the coordinate system for attributes markerWidth, markerHeight and the contents of the 'marker'.
If markerUnits="strokeWidth", markerWidth, markerHeight and the contents of the 'marker' represent values in a
coordinate system which has a single unit equal the size in user units of the current stroke width (see the
'stroke-width' property) in place for the graphic object referencing the marker.

http://www.w3.org/TR/SVG/painting.html (10 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/images/painting/marker.svg

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

If markerUnits="userSpaceOnUse", markerWidth, markerHeight and the contents of the 'marker' represent
values in the current user coordinate system in place for the graphic object referencing the marker (i.e., the
user coordinate system for the element referencing the 'marker' element via a 'marker', 'marker-start', 'marker-
mid' or 'marker-end' property).
If attribute markerUnits is not specified, then the effect is as if a value of strokeWidth were specified.
Animatable: yes.

refX = "<coordinate>"
The x-axis coordinate of the reference point which is to be aligned exactly at the marker position. The
coordinate is defined in the coordinate system after application of the viewBox and preserveAspectRatio
attributes.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

refY = "<coordinate>"
The y-axis coordinate of the reference point which is to be aligned exactly at the marker position. The
coordinate is defined in the coordinate system after application of the viewBox and preserveAspectRatio
attributes.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

markerWidth = "<length>"
Represents the width of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.

markerHeight = "<length>"
Represents the height of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.

orient = "auto | <angle>"
Indicates how the marker is rotated.

A value of auto indicates that the marker is oriented such that its positive x-axis is pointing as follows: (a) if
there is a path segment coming into the vertex and another path segment going out of the vertex, the marker's
positive x-axis should point toward the angle bisector for the angle at the given vertex, where that angle has
one side consisting of tangent vector for the path segment going into the vertex and the other side the tangent
vector for the path segment going out of the vertex (note: if the tangent vectors are the same, the angle
bisector equals the two tangent vectors), (b) if there is only a path segment going into the vertex (e.g., the last
vertex on an open path), the marker's positive x-axis should point in the same direction as the tangent vector
for the path segment going into the vertex, (c) if there is only a path segment going out of the vertex (e.g., the
first vertex on an open path), the marker's positive x-axis should point in the same direction as the tangent
vector for the path segment going out of the vertex. (Refer to 'path' element implementation notes for a more
thorough discussion of the directionality of path segments.)

In all cases for closed subpaths (e.g., subpaths which end with a 'closepath' command), the orientation of the
marker corresponding to the initial point of the subpath is calculated assuming that:

❍ the path segment going into the vertex is the path segment corresponding to the closepath
❍ the path segment coming out of the vertex is the first path segment in the subpath

When a 'closepath' command is followed by a command other than a 'moveto' command, then the orientation
of the marker corresponding to the 'closepath' command is calculated assuming that:

❍ the path segment going into the vertex is the path segment corresponding to the closepath
❍ the path segment coming out of the vertex is the first path segment of the subsequent subpath

A value of <angle> represents a particular orientation in the user space of the graphic object referencing the
marker. For example, if a value of "0" is given, then the marker will be drawn such that its x-axis will align with
the x-axis of the user space of the graphic object referencing the marker. If the attribute is not specified, the
effect is as if a value of "0" were specified.
Animatable: yes (non-additive, 'set' and 'animate' elements only).

http://www.w3.org/TR/SVG/painting.html (11 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#PathElementImplementationNotes

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Markers are drawn such that their reference point (i.e., attributes refX and refY) is positioned at the given vertex. In
other words, a translation transformation is constructed by the user agent to achieve the effect of having point (refX
and refY) within the marker content's coordinate system (after any transformations due to the viewBox and
preserveAspectRatio attributes) align exactly with the given vertex.

SVG's user agent style sheet sets the 'overflow' property for 'marker' elements to hidden, which causes a rectangular
clipping path to be created at the bounds of the marker tile. Unless the 'overflow' property is overridden, any graphics
within the marker which goes outside of the marker rectangle will be clipped.

The contents of the 'marker' are relative to a new coordinate system. Attribute markerUnits determines an initial scale
factor for transforming the graphics in the marker into the user coordinate system for the referencing element. An
additional set of transformations might occur if there is a viewBox attribute, in which case the coordinate system for
the contents of the 'marker' will be transformed due to the processing of attributes viewBox and preserveAspectRatio.
If there is no viewBox attribute, then the assumed default value for the the viewBox attribute has the origin of the
viewBox coincident with the origin of the viewport and the width/height of the viewBox the same as the width/height of
the viewport.

Properties inherit into the 'marker' element from its ancestors; properties do not inherit from the element referencing
the 'marker' element.

'marker' elements are never rendered directly; their only usage is as something that can be referenced using the
'marker', 'marker-start', 'marker-end' and 'marker-mid' properties. The 'display' property does not apply to the 'marker'
element; thus, 'marker' elements are not directly rendered even if the 'display' property is set to a value other than
none, and 'marker' elements are available for referencing even when the 'display' property on the 'marker' element or
any of its ancestors is set to none.

Event attributes and event listeners attached to the contents of a 'marker' element are not processed; only the
rendering aspects of 'marker' elements are processed.

11.6.3 Marker properties

'marker-start' defines the arrowhead or polymarker that shall be drawn at the first vertex of the given 'path' element or
basic shape. 'marker-end' defines the arrowhead or polymarker that shall be drawn at the final vertex. 'marker-mid'
defines the arrowhead or polymarker that shall be drawn at every other vertex (i.e., every vertex except the first and
last). Note that for a 'path' element which ends with a closed sub-path, the last vertex is the same as the initial vertex
on the given sub-path. In this case, if 'marker-end' does not equal none, then it is possible that two markers will be
rendered on the given vertex. One way to prevent this is to set 'marker-end' to none. (Note that the same comment
applies to 'polygon' elements.)

'marker-start', 'marker-end', marker-mid'
Value: none |

inherit |
<uri>

Initial: none
Applies to: 'path', 'line', 'polyline' and 'polygon' elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

none
Indicates that no marker symbol shall be drawn at the given vertex (vertices).

<uri>
The <uri> is a URI reference to the 'marker' element which shall be used as the arrowhead symbol or

http://www.w3.org/TR/SVG/painting.html (12 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/svgdom.html#EventListeners
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

polymarker at the given vertex or vertices. If the URI reference is not valid (e.g., it points to an object that is
undefined or the object is not a 'marker' element), then the marker(s) shall not be drawn.

The 'marker' property specifies the marker symbol that shall be used for all points on the sets the value for all
vertices on the given 'path' element or basic shape. It is a short-hand for the three individual marker properties:

'marker'
Value: see individual properties
Initial: see individual properties
Applies to: 'path', 'line', 'polyline' and 'polygon' elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

11.6.4 Details on how markers are rendered

Markers are drawn after the given object is filled and stroked.

For each marker that is drawn, a temporary new user coordinate system is established so that the marker will be
positioned and sized correctly, as follows:

● The axes of the temporary new user coordinate system are aligned according to the orient attribute on the
'marker' element and the slope of the curve at the given vertex. (Note: if there is a discontinuity at a vertex, the
slope is the average of the slopes of the two segments of the curve that join at the given vertex. If a slope
cannot be determined, the slope is assumed to be zero.)

● A temporary new coordinate system is established by attribute markerUnits. If markerUnits equals strokeWidth,
then the temporary new user coordinate system is the result of scaling the current user coordinate system by
the current value of property 'stroke-width'. If markerUnits equals userSpaceOnUse, then no extra scale
transformation is applied.

● An additional set of transformations might occur if the 'marker' element includes a viewBox attribute, in which
case additional transformations are set up to produce the necessary result due to attributes viewBox and
preserveAspectRatio.

● If the 'overflow' property on the 'marker' element indicates that the marker needs to be clipped to its viewport,
then an implicit clipping path is established at the bounds of the viewport.

The rendering effect of a marker is as if the contents of the referenced 'marker' element were deeply cloned into a
separate non-exposed DOM tree for each instance of the marker. Because the cloned DOM tree is non-exposed, the
SVG DOM does not show the cloned instance of the marker.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced 'marker' element into a
non-exposed DOM tree also copies any property values resulting from the CSS cascade [CSS2-CASCADE] and
property inheritance on the referenced element and its contents. CSS2 selectors can be applied to the original (i.e.,
referenced) elements because they are part of the formal document structure. CSS2 selectors cannot be applied to
the (conceptually) cloned DOM tree because its contents are not part of the formal document structure.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"
 viewBox="0 0 4000 2000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <defs>
 <marker id="Triangle"
 viewBox="0 0 10 10" refX="0" refY="5"

http://www.w3.org/TR/SVG/painting.html (13 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

 markerUnits="strokeWidth"
 markerWidth="4" markerHeight="3"
 orient="auto">
 <path d="M 0 0 L 10 5 L 0 10 z" />
 </marker>
 </defs>
 <rect x="10" y="10" width="3980" height="1980"
 fill="none" stroke="blue" stroke-width="10" />
 <desc>Placing an arrowhead at the end of a path.
 </desc>
 <path d="M 1000 750 L 2000 750 L 2500 1250"
 fill="none" stroke="black" stroke-width="100"
 marker-end="url(#Triangle)" />
</svg>

The rendering effect of the above file will be visually identical to the following:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4in" height="2in"
 viewBox="0 0 4000 2000" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <desc>File which produces the same effect
 as the marker example file, but without
 using markers.
 </desc>
 <rect x="10" y="10" width="3980" height="1980"
 fill="none" stroke="blue" stroke-width="10" />
 <!-- The path draws as before, but without the marker properties -->
 <path d="M 1000 750 L 2000 750 L 2500 1250"
 fill="none" stroke="black" stroke-width="100" />
 <!-- The following logic simulates drawing a marker
 at final vertex of the path. -->
 <!-- First off, move the origin of the user coordinate system
 so that the origin is now aligned with the end point of the path. -->
 <g transform="translate(2500,1250)" >
 <!-- Rotate the coordinate system 45 degrees because
 the marker specified orient="auto" and the final segment
 of the path is going in the direction of 45 degrees. -->
 <g transform="rotate(45)" >
 <!-- Scale the coordinate system to match the coordinate system
 indicated by the 'markerUnits' attributes, which in this case has
 a value of 'strokeWidth'. Therefore, scale the coordinate system
 by the current value of the 'stroke-width' property, which is 100. -->
 <g transform="scale(100)" >
 <!-- Translate the coordinate system by
 (-refX*viewBoxToMarkerUnitsScaleX, -refY*viewBoxToMarkerUnitsScaleY)
 in order that (refX,refY) within the marker will align with the vertex.
 In this case, we use the default value for preserveAspectRatio
 ('xMidYMid meet'), which means find a uniform scale factor
 (i.e., viewBoxToMarkerUnitsScaleX=viewBoxToMarkerUnitsScaleY)
 such that the viewBox fits entirely within the viewport ('meet') and
 is center-aligned ('xMidYMid'). In this case, the uniform scale factor
 is markerHeight/viewBoxHeight=3/10=.3. Therefore, translate by
 (-refX*.3,-refY*.3)=(0*.3,-5*.3)=(0,-1.5). -->
 <g transform="translate(0,-1.5)" >
 <!-- There is an implicit clipping path because the user agent style
 sheet says that the 'overflow' property for markers has the value
 'hidden'. To achieve this, create a clipping path at the bounds
 of the viewport. Note that in this case the viewport extends
 0.5 units to the left and right of the viewBox due to
 a uniform scale factor, different ratios for markerWidth/viewBoxWidth
 and markerHeight/viewBoxHeight, and 'xMidYMid' alignment -->
 <clipPath id="cp1" >
 <rect x="-0.5" y="0" width="4" height="3" />

http://www.w3.org/TR/SVG/painting.html (14 of 24)4/2/07 7:17 PM

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

 </clipPath>
 <g clip-path="url(#cp1)" >
 <!-- Scale the coordinate system by the uniform scale factor
 markerHeight/viewBoxHeight=3/10=.3 to set the coordinate
 system to viewBox units. -->
 <g transform="scale(.3)" >
 <!-- This 'g' element carries all property values that result from
 cascading and inheritance of properties on the original 'marker' element.
 In this example, neither fill nor stroke was specified on the 'marker'
 element or any ancestors of the 'marker', so the initial values of
 "black" and "none" are used, respectively. -->
 <g fill="black" stroke="none" >
 <!-- Expand out the contents of the 'marker' element. -->
 <path d="M 0 0 L 10 5 L 0 10 z" />
 </g>
 </g>
 </g>
 </g>
 </g>
 </g>
 </g>
</svg>

View this example as SVG (SVG-enabled browsers only)

11.7 Rendering properties

11.7.1 Color interpolation properties: 'color-interpolation' and 'color-interpolation-filters'

The SVG user agent performs color interpolations and compositing at various points as it processes SVG content.
Two properties, 'color-interpolation' and 'color-interpolation-filters', control which color space is used for particular
categories of graphics operations. The following table shows which property applies to which graphics operations:

Graphics operation Corresponding property

interpolating between gradient stops (see Gradient) 'color-interpolation'

interpolating color when performing color animations(see 'animateColor') 'color-interpolation'

alpha compositing of graphics elements into the current background 'color-interpolation'

filter effects 'color-interpolation-filters'

Both properties choose between color operations occurring in the sRGB color space or in a (light energy linear)
linearized RGB color space.

The conversion formulas between the sRGB color space (i.e., nonlinear with 2.2 gamma curve) and the linearized
RGB color space (i.e., color values expressed as sRGB tristimulus values without a gamma curve) can be found in
[SRGB]. For illustrative purposes, the following formula shows the conversion from sRGB to linearized RGB:

 R[sRGB] = R[sRGB-8bit] / 255
 G[sRGB] = G[sRGB-8bit] / 255
 B[sRGB] = B[sRGB-8bit] / 255
If R[sRGB], G[sRGB], B[sRGB] <= 0.04045
 R[linearRGB] = R[sRGB] / 12.92
 G[linearRGB] = G[sRGB] / 12.92
 B[linearRGB] = B[sRGB] / 12.92
else if R[sRGB], G[sRGB], B[sRGB] > 0.04045
 R[linearRGB] = ((R[sRGB] + 0.055) / 1.055) ^ 2.4
 G[linearRGB] = ((G[sRGB] + 0.055) / 1.055) ^ 2.4
 B[linearRGB] = ((B[sRGB] + 0.055) / 1.055) ^ 2.4
 R[linearRGB-8bit] = R[linearRGB] * 255

http://www.w3.org/TR/SVG/painting.html (15 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/images/painting/marker-simulated.svg
http://www.iec.ch/nr1899.htm
http://www.iec.ch/nr1899.htm

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

 G[linearRGB-8bit] = G[linearRGB] * 255
 B[linearRGB-8bit] = B[linearRGB] * 255

Out-of-range color values, if supported by the user agent, also are converted using the above formulas. (See
Clamping values which are restricted to a particular range.)

'color-interpolation'
Value: auto | sRGB | linearRGB | inherit
Initial: sRGB
Applies to: container elements, graphics elements and 'animateColor'

Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent can choose either the sRGB or linearRGB spaces for color interpolation. This
option indicates that the author doesn't require that color interpolation occur in a particular color space.

sRGB
Indicates that color interpolation should occur in the sRGB color space.

linearRGB
Indicates that color interpolation should occur in the linearized RGB color space as described above.

The 'color-interpolation' property specifies the color space for gradient interpolations, color animations and alpha
compositing.

When a child element is blended into a background, the value of the 'color-interpolation' property on the child
determines the type of blending, not the value of the 'color-interpolation' on the parent. For gradients which make use
of the xlink:href attribute to reference another gradient, the gradient uses the 'color-interpolation' property value from
the gradient element which is directly referenced by the 'fill' or 'stroke' property. When animating colors, color
interpolation is performed according to the value of the 'color-interpolation' property on the element being animated.

'color-interpolation-filters'
Value: auto | sRGB | linearRGB | inherit
Initial: linearRGB
Applies to: filter primitives
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent can choose either the sRGB or linearRGB spaces for filter effects color
operations. This option indicates that the author doesn't require that color operations occur in a particular color
space.

sRGB
Indicates that filter effects color operations should occur in the sRGB color space.

linearRGB
Indicates that filter effects color operations should occur in the linearized RGB color space.

The 'color-interpolation-filters' property specifies the color space for imaging operations performed via filter effects.

Note that 'color-interpolation-filters' has a different initial value than 'color-interpolation'. 'color-interpolation-filters' has
an initial value of linearRGB, whereas 'color-interpolation' has an initial value of sRGB. Thus, in the default case, filter
effects operations occur in the linearRGB color space, whereas all other color interpolations occur by default in the
sRGB color space.

http://www.w3.org/TR/SVG/painting.html (16 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/implnote.html#RangeClamping
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

11.7.2 The 'color-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs. quality
tradeoffs as it performs color interpolation and compositing. The 'color-rendering' property provides a hint to the SVG
user agent about how to optimize its color interpolation and compositing operations.

'color-rendering' takes precedence over 'color-interpolation-filters'. For example, assume 'color-rendering:
optimizeSpeed' and 'color-interpolation-filters:linearRGB'. In this case, the SVG user agent should perform color
operations in a way that optimizes performance, which might mean sacrificing the color interpolation precision as
specified by 'color-interpolation-filters:linearRGB'.

'color-rendering'
Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Applies to: container elements, graphics elements and 'animateColor'

Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be
given more importance than speed.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this
option will sometimes cause the user agent to perform color interpolation and compositing in the device RGB
color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.

11.7.3 The 'shape-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it
renders vector graphics elements such as 'path' elements and basic shapes such as circles and rectangles. The
'shape-rendering' property provides these hints.

'shape-rendering'
Value: auto | optimizeSpeed | crispEdges |

geometricPrecision | inherit
Initial: auto
Applies to: shapes
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric
precision, but with geometric precision given more importance than speed and crisp edges.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges. This
option will sometimes cause the user agent to turn off shape anti-aliasing.

crispEdges
Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over
rendering speed and geometric precision. To achieve crisp edges, the user agent might turn off anti-aliasing
for all lines and curves or possibly just for straight lines which are close to vertical or horizontal. Also, the user
agent might adjust line positions and line widths to align edges with device pixels.

http://www.w3.org/TR/SVG/painting.html (17 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

11.7.4 The 'text-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it
renders text. The 'text-rendering' property provides these hints.

'text-rendering'
Value: auto | optimizeSpeed | optimizeLegibility |

geometricPrecision | inherit
Initial: auto
Applies to: 'text' elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric
precision, but with legibility given more importance than speed and geometric precision.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This
option will sometimes cause the user agent to turn off text anti-aliasing.

optimizeLegibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The user
agent will often choose whether to apply anti-aliasing techniques, built-in font hinting or both to produce the
most legible text.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This
option will usually cause the user agent to suspend the use of hinting so that glyph outlines are drawn with
comparable geometric precision to the rendering of path data.

11.7.5 The 'image-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs. quality
tradeoffs as it performs image processing. The 'image-rendering' property provides a hint to the SVG user agent
about how to optimize its image rendering.:

'image-rendering'
Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Applies to: images
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be
given more importance than speed. The user agent shall employ a resampling algorithm at least as good as
nearest neighbor resampling, but bilinear resampling is strongly preferred. For Conforming High-Quality SVG
Viewers, the user agent shall employ a resampling algorithm at least as good as bilinear resampling.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. The user agent shall employ a
resampling algorithm at least as good as bilinear resampling.

optimizeSpeed

http://www.w3.org/TR/SVG/painting.html (18 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Indicates that the user agent shall emphasize rendering speed over quality. The user agent should use a
resampling algorithm which achieves the goal of fast rendering, with the requirement that the resampling
algorithm shall be at least as good as nearest neighbor resampling. If performance goals can be achieved with
higher quality algorithms, then the user agent should use the higher quality algorithms instead of nearest
neighbor resampling.

In all cases, resampling must be done in a truecolor (e.g., 24-bit) color space even if the original data and/or the
target device is indexed color.

11.8 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent.
Painting, however, is always done on each graphics element individually, never at the container element (e.g., a 'g')
level. Thus, for the following SVG, even though the gradient fill is specified on the 'g', the gradient is simply inherited
through the 'g' element down into each rectangle, each of which is rendered such that its interior is painted with the
gradient.

Example Inheritance

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="7cm" height="2cm" viewBox="0 0 700 200"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Gradients apply to leaf nodes
 </desc>
 <g>
 <defs>
 <linearGradient id="MyGradient" gradientUnits="objectBoundingBox">
 <stop offset="0%" stop-color="#F60" />
 <stop offset="100%" stop-color="#FF6" />
 </linearGradient>
 </defs>
 <rect x="1" y="1" width="698" height="198"
 fill="none" stroke="blue" stroke-width="2" />
 <g fill="url(#MyGradient)" >
 <rect x="100" y="50" width="200" height="100"/>
 <rect x="400" y="50" width="200" height="100"/>
 </g>
 </g>
</svg>

Example
Inheritance

View this example as SVG (SVG-enabled browsers only)

Any painting properties defined in terms of the object's bounding box use the bounding box of the graphics element
to which the operation applies. Note that text elements are defined such that any painting operations defined in terms
of the object's bounding box use the bounding box of the entire 'text' element. (See the discussion of object bounding
box units and text elements.)

http://www.w3.org/TR/SVG/painting.html (19 of 24)4/2/07 7:17 PM

http://www.w3.org/2000/svg
http://www.w3.org/TR/SVG/images/painting/inheritance.svg

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

11.9 Paint Attribute Module

The Paint Attribute Module defines the Paint.attrib attribute set.

Collection Name Attributes in Collection

Paint.attrib
color, fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset, stroke-linecap, stroke-linejoin,
stroke-miterlimit, stroke-width, color-interpolation, color-rendering

11.10 Basic Paint Attribute Module

The Basic Paint Attribute Module defines the Paint.attrib attribute set.

Collection Name Attributes in Collection

Paint.attrib
color, fill, fill-rule, stroke, stroke-dasharray, stroke-dashoffset, stroke-linecap, stroke-linejoin,
stroke-miterlimit, stroke-width, color-rendering

11.11 Opacity Attribute Module

The Opacity Attribute Module defines the Opacity.attrib attribute set.

Collection Name Attributes in Collection

Opacity.attrib opacity, stroke-opacity, fill-opacity

11.12 Graphics Attribute Module

The Graphics Attribute Module defines the Graphics.attrib attribute set.

Collection Name Attributes in Collection

Graphics.attrib display, image-rendering, pointer-events, shape-rendering, text-rendering, visibility

11.13 Basic Graphics Attribute Module

The Basic Graphics Attribute Module defines the Graphics.attrib attribute set.

Collection Name Attributes in Collection

Graphics.attrib display, visibility

11.14 Marker Module

Elements Attributes Content Model

http://www.w3.org/TR/SVG/painting.html (20 of 24)4/2/07 7:17 PM

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

marker
Core.attrib, External.attrib, Style.attrib, Presentation.attrib,
viewBox, preserveAspectRatio, refX, refY, markerUnits,
markerWidth, markerHeight, orient

(Description.class | Structure.class |
Shape.class | Text.class | Image.class
| View.class | Conditional.class |
Hyperlink.class | Script.class | Clip.
class | Mask.class | Gradient.class |
Pattern.class | Filter.class | Cursor.
class | Font.class | ColorProfile.class |
Animation.class)*

11.14.1 Marker Content Set

The Marker Module defines the Marker.class content set.

Content Set Name Elements in Content Set

Marker.class marker

11.14.2 Marker Attribute Set

The Marker Module defines the Marker.attrib attribute set.

Collection Name Attributes in Collection

Marker.attrib marker-start, marker-mid, marker-end

11.15 DOM interfaces

The following interfaces are defined below: SVGPaint, SVGMarkerElement.

Interface SVGPaint

The SVGPaint interface corresponds to basic type <paint> and represents the values of properties 'fill' and 'stroke'.

IDL Definition

interface SVGPaint : SVGColor {
 // Paint Types
 const unsigned short SVG_PAINTTYPE_UNKNOWN = 0;
 const unsigned short SVG_PAINTTYPE_RGBCOLOR = 1;
 const unsigned short SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR = 2;
 const unsigned short SVG_PAINTTYPE_NONE = 101;
 const unsigned short SVG_PAINTTYPE_CURRENTCOLOR = 102;
 const unsigned short SVG_PAINTTYPE_URI_NONE = 103;
 const unsigned short SVG_PAINTTYPE_URI_CURRENTCOLOR = 104;
 const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR = 105;
 const unsigned short SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR = 106;
 const unsigned short SVG_PAINTTYPE_URI = 107;
 readonly attribute unsigned short paintType;
 readonly attribute DOMString uri;
 void setUri (in DOMString uri);
 void setPaint (in unsigned short paintType, in DOMString uri, in DOMString rgbColor, in
DOMString iccColor)
 raises(SVGException);
};

http://www.w3.org/TR/SVG/painting.html (21 of 24)4/2/07 7:17 PM

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Definition group Paint Types

Defined constants
SVG_PAINTTYPE_UNKNOWN The paint type is not one of predefined types. It is

invalid to attempt to define a new value of this type
or to attempt to switch an existing value to this
type.

SVG_PAINTTYPE_RGBCOLOR An sRGB color has been specified without an
alternative ICC color specification.

SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along with an
alternative ICC color specification.

SVG_PAINTTYPE_NONE Corresponds to a 'none' value on a <paint>
specification.

SVG_PAINTTYPE_CURRENTCOLOR Corresponds to a 'currentColor' value on a <paint>
specification.

SVG_PAINTTYPE_URI_NONE A URI has been specified, along with an explicit
'none' as the backup paint method in case the URI
is unavailable or invalid.

SVG_PAINTTYPE_URI_CURRENTCOLOR A URI has been specified, along with 'currentColor'
as the backup paint method in case the URI is
unavailable or invalid.

SVG_PAINTTYPE_URI_RGBCOLOR A URI has been specified, along with an sRGB
color as the backup paint method in case the URI
is unavailable or invalid.

SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR A URI has been specified, along with both an
sRGB color and alternate ICC color as the backup
paint method in case the URI is unavailable or
invalid.

SVG_PAINTTYPE_URI Only a URI has been specified.
Attributes

readonly unsigned short paintType
The type of paint, identified by one of the constants above.

readonly DOMString uri
When the paintType specifies a URI, this attribute holds the URI string. When the paintType does not
specify a URI, this attribute is null.

Methods
setUri

Sets the paintType to SVG_PAINTTYPE_URI_NONE and sets uri to the specified value.
Parameters

in DOMString uri The URI for the desired paint server.
No Return Value
No Exceptions

setPaint
Sets the paintType as specified by the parameters. If paintType requires a URI, then uri must be non-
null and a valid string; otherwise, uri must be null. If paintType requires an RGBColor, then
rgbColor must be a valid RGBColor object; otherwise, rgbColor must be null. If paintType requires
an SVGICCColor, then iccColor must be a valid SVGICCColor object; otherwise, iccColor must be
null.
Parameters

in unsigned short paintType One of the defined constants for paintType.

in DOMString uri The URI for the desired paint server, or null.

in DOMString rgbColor The specification of an sRGB color, or null.

in DOMString iccColor The specification of an ICC color, or null.
No Return Value
Exceptions

http://www.w3.org/TR/SVG/painting.html (22 of 24)4/2/07 7:17 PM

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an invalid
value.

Interface SVGMarkerElement

The SVGMarkerElement interface corresponds to the 'marker' element.

IDL Definition

interface SVGMarkerElement :
 SVGElement,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGFitToViewBox {
 // Marker Unit Types
 const unsigned short SVG_MARKERUNITS_UNKNOWN = 0;
 const unsigned short SVG_MARKERUNITS_USERSPACEONUSE = 1;
 const unsigned short SVG_MARKERUNITS_STROKEWIDTH = 2;
 // Marker Orientation Types
 const unsigned short SVG_MARKER_ORIENT_UNKNOWN = 0;
 const unsigned short SVG_MARKER_ORIENT_AUTO = 1;
 const unsigned short SVG_MARKER_ORIENT_ANGLE = 2;
 readonly attribute SVGAnimatedLength refX;
 readonly attribute SVGAnimatedLength refY;
 readonly attribute SVGAnimatedEnumeration markerUnits;
 readonly attribute SVGAnimatedLength markerWidth;
 readonly attribute SVGAnimatedLength markerHeight;
 readonly attribute SVGAnimatedEnumeration orientType;
 readonly attribute SVGAnimatedAngle orientAngle;
 void setOrientToAuto ();
 void setOrientToAngle (in SVGAngle angle);
};

Definition group Marker Unit Types

Defined constants
SVG_MARKERUNITS_UNKNOWN The marker unit type is not one of predefined types. It is

invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_MARKERUNITS_USERSPACEONUSE The value of attribute markerUnits is 'userSpaceOnUse'.

SVG_MARKERUNITS_STROKEWIDTH The value of attribute markerUnits is 'strokeWidth'.
Definition group Marker Orientation Types

Defined constants
SVG_MARKER_ORIENT_UNKNOWN The marker orientation is not one of predefined types. It is

invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_MARKER_ORIENT_AUTO Attribute orient has value 'auto'.

SVG_MARKER_ORIENT_ANGLE Attribute orient has an angle value.
Attributes

readonly SVGAnimatedLength refX
Corresponds to attribute refX on the given 'marker' element.

readonly SVGAnimatedLength refY
Corresponds to attribute refY on the given 'marker' element.

readonly SVGAnimatedEnumeration markerUnits

http://www.w3.org/TR/SVG/painting.html (23 of 24)4/2/07 7:17 PM

Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114

Corresponds to attribute markerUnits on the given 'marker' element. One of the Marker Units Types
defined above.

readonly SVGAnimatedLength markerWidth
Corresponds to attribute markerWidth on the given 'marker' element.

readonly SVGAnimatedLength markerHeight
Corresponds to attribute markerHeight on the given 'marker' element.

readonly SVGAnimatedEnumeration orientType
Corresponds to attribute orient on the given 'marker' element. One of the Marker Orientation Types
defined above.

readonly SVGAnimatedAngle orientAngle
Corresponds to attribute orient on the given 'marker' element. If markerUnits is
SVG_MARKER_ORIENT_ANGLE, the angle value for attribute orient; otherwise, it will be set to zero.

Methods
setOrientToAuto

Sets the value of attribute orient to 'auto'.
No Parameters
No Return Value
No Exceptions

setOrientToAngle
Sets the value of attribute orient to the given angle.
Parameters

in SVGAngle angle The angle value to use for attribute orient.
No Return Value
No Exceptions

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/painting.html (24 of 24)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Color - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

12 Color

Contents

● 12.1 Introduction
● 12.2 The 'color' property
● 12.3 Color profile descriptions

❍ 12.3.1 Overview of color profile descriptions
❍ 12.3.2 Alternative ways for defining a color profile description
❍ 12.3.3 The 'color-profile' element
❍ 12.3.4 @color-profile when using CSS styling
❍ 12.3.5 'color-profile' property

● 12.4 Color Profile Module
● 12.5 DOM interfaces

12.1 Introduction

All SVG colors are specified in the sRGB color space (see [SRGB]). At a minimum, SVG user
agents shall conform to the color behavior requirements specified in the color units section and
the minimal gamma correction rules defined in the CSS2 specification.

Additionally, SVG content can specify an alternate color specification using an ICC profile (see
[ICC32]). If ICC-based colors are provided and the SVG user agent supports ICC color, then the
ICC-based color takes precedence over the sRGB color specification. Note that color
interpolation occurs in an RGB color space even if an ICC-based color specification is provided
(see 'color-interpolation').

12.2 The 'color' property

The 'color' property is used to provide a potential indirect value (currentColor) for the 'fill',
'stroke', 'stop-color', 'flood-color', 'lighting-color' properties.

'color'
Value: <color> | inherit

http://www.w3.org/TR/SVG/color.html (1 of 9)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#color-units
http://www.w3.org/TR/REC-CSS2/colors.html#gamma-correction
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Color - SVG 1.1 - 20030114

Initial: depends on user agent
Applies to: elements to which properties 'fill', 'stroke', 'stop-color', 'flood-color', 'lighting-

color' apply
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

Except for any additional information provided in this specification, the normative definition of the
property is in [CSS2].

12.3 Color profile descriptions

12.3.1 Overview of color profile descriptions

The International Color Consortium has established a standard, the ICC Profile [ICC32], for
documenting the color characteristics of input and output devices. Using these profiles, it is
possible to build a transform and correct visual data for viewing on different devices.

A color profile description provides the bridge between an ICC profile and references to that
ICC profile within SVG content. The color profile description is added to the user agent's list of
known color profiles and then used to select the relevant profile. The color profile description
contains descriptors for the location of the color profile on the Web, a name to reference the
profile and information about rendering intent.

12.3.2 Alternative ways for defining a color profile description

Color profile descriptions can be specified in either of the following ways:

● a 'color-profile' element
● an @color-profile rule within a CSS style sheet (only applicable for user agents which

support using CSS [CSS2] to style the SVG content)

If a color profile with the same name value has been identified by both a 'color-profile' element
and @color-profile rules within a CSS style sheet, then the user agent shall first attempt to locate
the profile by using the specifications in the @color-profile rules first.

12.3.3 The 'color-profile' element

http://www.w3.org/TR/SVG/color.html (2 of 9)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/
http://www.color.org/
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-CSS2/

Color - SVG 1.1 - 20030114

<!ENTITY % SVG.color-profile.extra.content "" >
<!ENTITY % SVG.color-profile.element "INCLUDE" >
<![%SVG.color-profile.element;[
<!ENTITY % SVG.color-profile.content
 "(%SVG.Description.class; %SVG.color-profile.extra.cont\

ent;)*"
>
<!ELEMENT %SVG.color-profile.qname; %SVG.color-profile\

.content; >
<!-- end of SVG.color-profile.element -->]]>
<!ENTITY % SVG.color-profile.attlist "INCLUDE" >
<![%SVG.color-profile.attlist;[
<!ATTLIST %SVG.color-profile.qname;

 %SVG.Core.attrib;

 %SVG.XLink.attrib;

 local CDATA #IMPLIED
 name CDATA #REQUIRED
 rendering-intent (auto | perceptual | relative-colorimetric | saturation |
 absolute-colorimetric) 'auto'
>

Attribute definitions:

xlink:href = "<uri>"
The location of an ICC profile resource.
Animatable: no.

local = "<string>"
The unique ID for a locally stored color profile. <string> is the profile's unique ID as
specified by International Color Consortium. If both the xlink:href and the local attributes
are specified, then the user agent shall search the local system for the locally stored color
profile first, and, if not available locally, then attempt to use the resource identified by the
xlink:href attribute. (Note: Profile description fields do not represent a profile's unique ID.
With current ICC proposals, the profile's unique ID is an MD5-encoded value within the
profile header.).
Animatable: no.

name = "<name>"
The name which is used as the first parameter for icc-color specifications within 'fill',
'stroke', 'stop-color', 'flood-color' and 'lighting-color' property values to identify the color
profile to use for the ICC color specification and the name which can be the value of the
'color-profile' property. Note that if <name> is not provided, it will be impossible to
reference the given color profile description. The name "sRGB" is predefined; any color
profile descriptions with <name> set to "sRGB" will be ignored. For consistency with CSS
lexical scanning and parsing rules, the keyword "sRGB" is case-insensitive; however, it is
recommended that the mixed capitalization "sRGB" be used for consistency with common
industry practice.
Animatable: no.

rendering-intent = "auto | perceptual | relative-colorimetric | saturation | absolute-
colorimetric"

http://www.w3.org/TR/SVG/color.html (3 of 9)4/2/07 7:17 PM

http://www.color.org/
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.w3.org/TR/REC-CSS2/grammar.html#q2

Color - SVG 1.1 - 20030114

'rendering-intent' permits the specification of a color profile rendering intent other than the
default. 'rendering-intent' is applicable primarily to color profiles corresponding to CMYK
color spaces. The different options cause different methods to be used for translating
colors to the color gamut of the target rendering device:

auto
This is the default behavior. The user agent determines the best intent based on the
content type. For image content containing an embedded profile, it shall be
assumed that the intent specified within the profile is the desired intent. Otherwise,
the user agent shall use the current profile and force the intent, overriding any intent
that might be stored in the profile itself.

perceptual
This method, often the preferred choice for images, preserves the relationship
between colors. It attempts to maintain relative color values among the pixels as
they are mapped to the target device gamut. Sometimes pixel values that were
originally within the target device gamut are changed in order to avoid hue shifts
and discontinuities and to preserve as much as possible the overall appearance of
the scene.

saturation
Preserves the relative saturation (chroma) values of the original pixels. Out of
gamut colors are converted to colors that have the same saturation but fall just
inside the gamut.

relative colorimetric
Leaves colors that fall inside the gamut unchanged. This method usually converts
out of gamut colors to colors that have the same lightness but fall just inside the
gamut.

absolute colorimetric
Disables white point matching when converting colors. This option is generally not
recommended.

Animatable: no.

12.3.4 @color-profile when using CSS styling

When the document is styled using CSS, the @color-profile rule can be used to specify a color
profile description. The general form is:

@color-profile { <color-profile-description> }

where the <color-profile-description> has the form:

descriptor: value;
[...]
descriptor: value;

Each @color-profile rule specifies a value for every color profile descriptor, either implicitly or
explicitly. Those not given explicit values in the rule take the initial value listed with each
descriptor in this specification. These descriptors apply solely within the context of the @color-
profile rule in which they are defined, and do not apply to document language elements. Thus,

http://www.w3.org/TR/SVG/color.html (4 of 9)4/2/07 7:17 PM

Color - SVG 1.1 - 20030114

there is no notion of which elements the descriptors apply to, or whether the values are inherited
by child elements.

The following are the descriptors for a <color-profile-description>:

'src' (Descriptor)
Values:sRGB | <local-profile> | <uri> | (<local-profile> <uri>) | inherit
Initial: sRGB
Media: visual

sRGB
The source profile is the sRGB color space. For consistency with CSS lexical scanning
and parsing rules, the keyword "sRGB" is case-insensitive; however, it is recommended
that the mixed capitalization "sRGB" be used for consistency with common industry
practice.

<local-profile>
The source profile is a locally-stored profile. The syntax for <local-profile> is:

"local(" + <string> + ")"

where <string> is the profile's unique ID as specified by International Color Consortium.
(Note: Profile description fields do not represent a profile's unique ID. With current ICC
proposals, the profile's unique ID is an MD5-encoded value within the profile header.)

<uri>
The source profile is a URI reference to a color profile.

(<local-profile> <uri>)
Two profiles are specified. If <local-profile> cannot be found on the local system, then the
<uri> is used.

'name' (Descriptor)
Values:<name>
Initial: undefined
Media: visual

<name>
See the description for the name attribute on the 'color-profile' element. Note that if
<name> is not provided, it will be impossible to reference the given @color-profile
definition.

'rendering-intent' (Descriptor)

Values:
auto | perceptual | relative-colorimetric |
saturation | absolute-colorimetric

Initial: auto
Media: visual
Animatable: no

See the description for the rendering-intent attribute on the 'color-profile' element.

http://www.w3.org/TR/SVG/color.html (5 of 9)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.color.org/

Color - SVG 1.1 - 20030114

12.3.5 'color-profile' property

'color-profile'
Value: auto | sRGB | <name> | <uri> | inherit
Initial: auto
Applies to: 'image' elements that refer to raster images
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
This is the default behavior. All colors are presumed to be defined in the sRGB color
space unless a more precise embedded profile is specified within content data. For
images that do have a profile built into their data, that profile is used. For images that do
not have a profile, the sRGB profile is used.

sRGB
The source profile is assumed to be sRGB. This differs from auto in that it overrides an
embedded profile inside an image.

For consistency with CSS lexical scanning and parsing rules, the keyword "sRGB" is case-
insensitive; however, it is recommended that the mixed capitalization "sRGB" be used for
consistency with common industry practice.

<name>
A name corresponding to a defined color profile that is in the user agent's color profile
description database. The user agent searches the color profile description database for a
color profile description entry whose name descriptor matches <name> and uses the last
matching entry that is found. If a match is found, the corresponding profile overrides an
embedded profile inside an image. If no match is found, then the embedded profile inside
the image is used.

<uri>
A URI reference to the source color profile. The referenced color profile overrides an
embedded profile inside the image.

12.4 Color Profile Module

Elements Attributes Content Model

color-profile Core.attrib, XLink.attrib, local, name, rendering-intent (Description.class)*

12.4.1 Color Profile Content Set

The Color Profile Module defines the ColorProfileElements content set.

http://www.w3.org/TR/SVG/color.html (6 of 9)4/2/07 7:17 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/grammar.html#q2

Color - SVG 1.1 - 20030114

Content Set Name Elements in Content Set

ColorProfileElements color-profile

12.5 DOM interfaces

The following interfaces are defined below: SVGColorProfileElement, SVGColorProfileRule.

Interface SVGColorProfileElement

The SVGColorProfileElement interface corresponds to the 'color-profile' element.

IDL Definition

interface SVGColorProfileElement :
 SVGElement,
 SVGURIReference,
 SVGRenderingIntent {
 attribute DOMString _local;
 // raises DOMException on setting
 // (NOTE: attribute is prefixed by "_"
 // as "local" is an IDL keyword. The
 // prefix will be removed upon processing)
 attribute DOMString name;
 // raises DOMException on setting
 attribute unsigned short renderingIntent;
 // raises DOMException on setting
};

Attributes

DOMString local
Corresponds to attribute local on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

DOMString name
Corresponds to attribute name on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

unsigned short renderingIntent
Corresponds to attribute rendering-intent on the given element. The type of
rendering intent, identified by one of the SVGRenderingIntent constants.

http://www.w3.org/TR/SVG/color.html (7 of 9)4/2/07 7:17 PM

Color - SVG 1.1 - 20030114

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an

attempt to change the value of a readonly attribute.

Interface SVGColorProfileRule

The SVGColorProfileRule interface represents an @color-profile rule in a CSS style sheet. An
@color-profile rule identifies a ICC profile which can be referenced within a given document.

Support for the SVGColorProfileRule interface is only required in user agents that support
styling with CSS.

IDL Definition

interface SVGColorProfileRule :
 SVGCSSRule,
 SVGRenderingIntent {
 attribute DOMString src;
 // raises DOMException on setting
 attribute DOMString name;
 // raises DOMException on setting
 attribute unsigned short renderingIntent;
 // raises DOMException on setting
};

Attributes

DOMString src
Corresponds to property src within an @color-profile rule.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

DOMString name
Corresponds to property name within an @color-profile rule.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

unsigned short renderingIntent
The type of rendering intent, identified by one of the SVGRenderingIntent
constants.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

http://www.w3.org/TR/SVG/color.html (8 of 9)4/2/07 7:17 PM

Color - SVG 1.1 - 20030114

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/color.html (9 of 9)4/2/07 7:17 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Gradients and Patterns - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

13 Gradients and Patterns

Contents

● 13.1 Introduction
● 13.2 Gradients

❍ 13.2.1 Introduction
❍ 13.2.2 Linear gradients
❍ 13.2.3 Radial gradients
❍ 13.2.4 Gradient stops

● 13.3 Patterns
● 13.4 Gradient Module
● 13.5 Pattern Module
● 13.6 DOM interfaces

13.1 Introduction

With SVG, you can fill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text
using one of the following:

● color (using <color> or the 'solidColor' element)
● gradients (linear or radial)
● patterns (vector or image, possibly tiled)

SVG uses the general notion of a paint server. Gradients and patterns are just specific types
of built-in paint servers. The 'solidColor' element is another built-in paint server, described in
Color.

Paint servers are referenced using a URI reference on a 'fill' or 'stroke' property.

13.2 Gradients

http://www.w3.org/TR/SVG/pservers.html (1 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Gradients and Patterns - SVG 1.1 - 20030114

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to
another, possibly followed by additional transitions along the same vector to other colors. SVG
provides for two types of gradients, linear gradients and radial gradients.

Once defined, gradients are then referenced using 'fill' or 'stroke' properties on a given
graphics element to indicate that the given element shall be filled or stroked with the referenced
gradient.

13.2.2 Linear gradients

Linear gradients are defined by a 'linearGradient' element.

<!ENTITY % SVG.linearGradient.extra.content "" >
<!ENTITY % SVG.linearGradient.element "INCLUDE" >
<![%SVG.linearGradient.element;[
<!ENTITY % SVG.linearGradient.content
 "((%SVG.Description.class;)*, (%SVG.stop.qname; | %SVG.animate.qname;

 | %SVG.set.qname; | %SVG.animateTransform.qname;

 %SVG.linearGradient.extra.content;)*)"
>
<!ELEMENT %SVG.linearGradient.qname; %SVG.linearG\

radient.content; >
<!-- end of SVG.linearGradient.element -->]]>
<!ENTITY % SVG.linearGradient.attlist "INCLUDE" >
<![%SVG.linearGradient.attlist;[
<!ATTLIST %SVG.linearGradient.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.Gradient.attrib;

 %SVG.XLink.attrib;

 %SVG.External.attrib;

 x1 %Coordinate.datatype; #IMPLIED

 y1 %Coordinate.datatype; #IMPLIED

 x2 %Coordinate.datatype; #IMPLIED

 y2 %Coordinate.datatype; #IMPLIED

 gradientUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 gradientTransform %TransformList.datatype; #IMPLIED

 spreadMethod (pad | reflect | repeat) #IMPLIED
>

Attribute definitions:

gradientUnits = "userSpaceOnUse | objectBoundingBox"

http://www.w3.org/TR/SVG/pservers.html (2 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

Defines the coordinate system for attributes x1, y1, x2, y2.
If gradientUnits="userSpaceOnUse", x1, y1, x2, y2 represent values in the coordinate
system that results from taking the current user coordinate system in place at the time
when the gradient element is referenced (i.e., the user coordinate system for the element
referencing the gradient element via a 'fill' or 'stroke' property) and then applying the
transform specified by attribute gradientTransform.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes x1, y1,
x2, y2 is established using the bounding box of the element to which the gradient is
applied (see Object bounding box units) and then applying the transform specified by
attribute gradientTransform.
When gradientUnits="objectBoundingBox" and gradientTransform is the identity matrix,
the stripes of the linear gradient are perpendicular to the gradient vector in object
bounding box space (i.e., the abstract coordinate system where (0,0) is at the top/left of
the object bounding box and (1,1) is at the bottom/right of the object bounding box).
When the object's bounding box is not square, the stripes that are conceptually
perpendicular to the gradient vector within object bounding box space will render non-
perpendicular relative to the gradient vector in user space due to application of the non-
uniform scaling transformation from bounding box space to user space.
If attribute gradientUnits is not specified, then the effect is as if a value of
objectBoundingBox were specified.
Animatable: yes.

gradientTransform = "<transform-list>"
Contains the definition of an optional additional transformation from the gradient
coordinate system onto the target coordinate system (i.e., userSpaceOnUse or
objectBoundingBox). This allows for things such as skewing the gradient. This additional
transformation matrix is post-multiplied to (i.e., inserted to the right of) any previously
defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.
If attribute gradientTransform is not specified, then the effect is as if an identity transform
were specified.
Animatable: yes.

x1 = "<coordinate>"
x1, y1, x2, y2 define a gradient vector for the linear gradient. This gradient vector
provides starting and ending points onto which the gradient stops are mapped. The
values of x1, y1, x2, y2 can be either numbers or percentages.
If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

y1 = "<coordinate>"
See x1.
If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

x2 = "<coordinate>"
See x1.
If the attribute is not specified, the effect is as if a value of "100%" were specified.
Animatable: yes.

y2 = "<coordinate>"
See x1.

http://www.w3.org/TR/SVG/pservers.html (3 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

spreadMethod = "pad | reflect | repeat"
Indicates what happens if the gradient starts or ends inside the bounds of the target
rectangle. Possible values are: pad, which says to use the terminal colors of the gradient
to fill the remainder of the target region, reflect, which says to reflect the gradient pattern
start-to-end, end-to-start, start-to-end, etc. continuously until the target rectangle is filled,
and repeat, which says to repeat the gradient pattern start-to-end, start-to-end, start-to-
end, etc. continuously until the target region is filled.
If the attribute is not specified, the effect is as if a value of "pad" were specified.
Animatable: yes.

xlink:href = "<uri>"
A URI reference to a different 'linearGradient' or 'radialGradient' element within the
current SVG document fragment. Any 'linearGradient' attributes which are defined on the
referenced element which are not defined on this element are inherited by this element. If
this element has no defined gradient stops, and the referenced element does (possibly
due to its own href attribute), then this element inherits the gradient stop from the
referenced element. Inheritance can be indirect to an arbitrary level; thus, if the
referenced element inherits attribute or gradient stops due to its own href attribute, then
the current element can inherit those attributes or gradient stops.
Animatable: yes.

Percentages are allowed for x1, y1, x2, y2. For gradientUnits="userSpaceOnUse",
percentages represent values relative to the current viewport. For
gradientUnits="objectBoundingBox", percentages represent values relative to the bounding box
for the object.

If x1 = x2 and y1 = y2, then the area to be painted will be painted as a single color using the
color and opacity of the last gradient stop.

Properties inherit into the 'linearGradient' element from its ancestors; properties do not inherit
from the element referencing the 'linearGradient' element.

'linearGradient' elements are never rendered directly; their only usage is as something that can
be referenced using the 'fill' and 'stroke' properties. The 'display' property does not apply to the
'linearGradient' element; thus, 'linearGradient' elements are not directly rendered even if the
'display' property is set to a value other than none, and 'linearGradient' elements are available
for referencing even when the 'display' property on the 'linearGradient' element or any of its
ancestors is set to none.

Example lingrad01 shows how to fill a rectangle by referencing a linear gradient paint server.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example lingrad01 - fill a rectangle using a

http://www.w3.org/TR/SVG/pservers.html (4 of 20)4/2/07 7:18 PM

http://www.w3.org/2000/svg

Gradients and Patterns - SVG 1.1 - 20030114

 linear gradient paint server</desc>
 <g>
 <defs>
 <linearGradient id="MyGradient">
 <stop offset="5%" stop-color="#F60" />
 <stop offset="95%" stop-color="#FF6" />
 </linearGradient>
 </defs>
 <!-- Outline the drawing area in blue -->
 <rect fill="none" stroke="blue"
 x="1" y="1" width="798" height="398"/>
 <!-- The rectangle is filled using a linear gradient paint server -->
 <rect fill="url(#MyGradient)" stroke="black" stroke-width="5"
 x="100" y="100" width="600" height="200"/>
 </g>
</svg>

Example lingrad01

View this example as SVG (SVG-enabled browsers only)

13.2.3 Radial gradients

Radial gradients are defined by a 'radialGradient' element.

<!ENTITY % SVG.radialGradient.extra.content "" >
<!ENTITY % SVG.radialGradient.element "INCLUDE" >
<![%SVG.radialGradient.element;[
<!ENTITY % SVG.radialGradient.content
 "((%SVG.Description.class;)*, (%SVG.stop.qname; | %SVG.animate.qname;

 | %SVG.set.qname; | %SVG.animateTransform.qname;

 %SVG.radialGradient.extra.content;)*)"
>
<!ELEMENT %SVG.radialGradient.qname; %SVG.radialG\

radient.content; >
<!-- end of SVG.radialGradient.element -->]]>
<!ENTITY % SVG.radialGradient.attlist "INCLUDE" >
<![%SVG.radialGradient.attlist;[

http://www.w3.org/TR/SVG/pservers.html (5 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/images/pservers/lingrad01.svg

Gradients and Patterns - SVG 1.1 - 20030114

<!ATTLIST %SVG.radialGradient.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.Gradient.attrib;

 %SVG.XLink.attrib;

 %SVG.External.attrib;

 cx %Coordinate.datatype; #IMPLIED

 cy %Coordinate.datatype; #IMPLIED

 r %Length.datatype; #IMPLIED

 fx %Coordinate.datatype; #IMPLIED

 fy %Coordinate.datatype; #IMPLIED

 gradientUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 gradientTransform %TransformList.datatype; #IMPLIED

 spreadMethod (pad | reflect | repeat) #IMPLIED
>

Attribute definitions:

gradientUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes cx, cy, r, fx, fy.
If gradientUnits="userSpaceOnUse", cx, cy, r, fx, fy represent values in the coordinate
system that results from taking the current user coordinate system in place at the time
when the gradient element is referenced (i.e., the user coordinate system for the element
referencing the gradient element via a 'fill' or 'stroke' property) and then applying the
transform specified by attribute gradientTransform.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes cx, cy, r,
fx, fy is established using the bounding box of the element to which the gradient is
applied (see Object bounding box units) and then applying the transform specified by
attribute gradientTransform.
When gradientUnits="objectBoundingBox" and gradientTransform is the identity matrix,
then the rings of the radial gradient are circular with respect to the object bounding box
space (i.e., the abstract coordinate system where (0,0) is at the top/left of the object
bounding box and (1,1) is at the bottom/right of the object bounding box). When the
object's bounding box is not square, the rings that are conceptually circular within object
bounding box space will render as elliptical due to application of the non-uniform scaling
transformation from bounding box space to user space.
If attribute gradientUnits is not specified, then the effect is as if a value of
objectBoundingBox were specified.
Animatable: yes.

gradientTransform = "<transform-list>"
Contains the definitions of an optional additional transformation from the gradient
coordinate system onto the target coordinate system (i.e., userSpaceOnUse or
objectBoundingBox). This allows for things such as skewing the gradient. This additional
transformation matrix is post-multiplied to (i.e., inserted to the right of) any previously
defined transformations, including the implicit transformation necessary to convert from
object bounding box units to user space.

http://www.w3.org/TR/SVG/pservers.html (6 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

If attribute gradientTransform is not specified, then the effect is as if an identity transform
were specified.
Animatable: yes.

cx = "<coordinate>"
cx, cy, r define the largest (i.e., outermost) circle for the radial gradient. The gradient will
be drawn such that the 100% gradient stop is mapped to the perimeter of this largest (i.
e., outermost) circle.
If the attribute is not specified, the effect is as if a value of "50%" were specified.
Animatable: yes.

cy = "<coordinate>"
See cx.
If the attribute is not specified, the effect is as if a value of "50%" were specified.
Animatable: yes.

r = "<length>"
See cx.
A negative value is an error (see Error processing). A value of zero will cause the area to
be painted as a single color using the color and opacity of the last gradient stop.
If the attribute is not specified, the effect is as if a value of "50%" were specified.
Animatable: yes.

fx = "<coordinate>"
fx, fy define the focal point for the radial gradient. The gradient will be drawn such that
the 0% gradient stop is mapped to (fx, fy).
If attribute fx is not specified, fx will coincide with cx.
Animatable: yes.

fy = "<coordinate>"
See fx.
If attribute fy is not specified, fy will coincide with cy.
Animatable: yes.

spreadMethod = "pad | reflect | repeat"
Indicates what happens if the gradient starts or ends inside the bounds of the object(s)
being painted by the gradient. Has the same values and meanings as the spreadMethod
attribute on 'linearGradient' element.
Animatable: yes.

xlink:href = "<uri>"
A URI reference to a different 'linearGradient' or 'radialGradient' element within the
current SVG document fragment. Any 'radialGradient' attributes which are defined on the
referenced element which are not defined on this element are inherited by this element. If
this element has no defined gradient stops, and the referenced element does (possibly
due to its own href attribute), then this element inherits the gradient stop from the
referenced element. Inheritance can be indirect to an arbitrary level; thus, if the
referenced element inherits attribute or gradient stops due to its own href attribute, then
the current element can inherit those attributes or gradient stops.
Animatable: yes.

Percentages are allowed for attributes cx, cy, r, fx and fy. For gradientUnits="userSpaceOnUse",
percentages represent values relative to the current viewport. For

http://www.w3.org/TR/SVG/pservers.html (7 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Gradients and Patterns - SVG 1.1 - 20030114

gradientUnits="objectBoundingBox", percentages represent values relative to the bounding box
for the object.

If the point defined by fx and fy lies outside the circle defined by cx, cy and r, then the user
agent shall set the focal point to the intersection of the line from (cx, cy) to (fx, fy) with the circle
defined by cx, cy and r.

Properties inherit into the 'radialGradient' element from its ancestors; properties do not inherit
from the element referencing the 'radialGradient' element.

'radialGradient' elements are never rendered directly; their only usage is as something that can
be referenced using the 'fill' and 'stroke' properties. The 'display' property does not apply to the
'radialGradient' element; thus, 'radialGradient' elements are not directly rendered even if the
'display' property is set to a value other than none, and 'radialGradient' elements are available
for referencing even when the 'display' property on the 'radialGradient' element or any of its
ancestors is set to none.

Example radgrad01 shows how to fill a rectangle by referencing a radial gradient paint server.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <desc>Example radgrad01 - fill a rectangle by referencing a
 radial gradient paint server</desc>
 <g>
 <defs>
 <radialGradient id="MyGradient" gradientUnits="userSpaceOnUse"
 cx="400" cy="200" r="300" fx="400" fy="200">
 <stop offset="0%" stop-color="red" />
 <stop offset="50%" stop-color="blue" />
 <stop offset="100%" stop-color="red" />
 </radialGradient>
 </defs>
 <!-- Outline the drawing area in blue -->
 <rect fill="none" stroke="blue"
 x="1" y="1" width="798" height="398"/>
 <!-- The rectangle is filled using a radial gradient paint server -->
 <rect fill="url(#MyGradient)" stroke="black" stroke-width="5"
 x="100" y="100" width="600" height="200"/>
 </g>
</svg>

http://www.w3.org/TR/SVG/pservers.html (8 of 20)4/2/07 7:18 PM

http://www.w3.org/2000/svg

Gradients and Patterns - SVG 1.1 - 20030114

Example radgrad01

View this example as SVG (SVG-enabled browsers only)

13.2.4 Gradient stops

The ramp of colors to use on a gradient is defined by the 'stop' elements that are child
elements to either the 'linearGradient' element or the 'radialGradient' element.

<!ENTITY % SVG.stop.extra.content "" >
<!ENTITY % SVG.stop.element "INCLUDE" >
<![%SVG.stop.element;[
<!ENTITY % SVG.stop.content
 "(%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;

 %SVG.stop.extra.content;)*"
>
<!ELEMENT %SVG.stop.qname; %SVG.stop.content; >

<!-- end of SVG.stop.element -->]]>
<!ENTITY % SVG.stop.attlist "INCLUDE" >
<![%SVG.stop.attlist;[
<!ATTLIST %SVG.stop.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.Gradient.attrib;

 offset %NumberOrPercentage.datatype; #REQUIRED

>

Attribute definitions:

offset = "<number> | <percentage>"
The offset attribute is either a <number> (usually ranging from 0 to 1) or a <percentage>
(usually ranging from 0% to 100%) which indicates where the gradient stop is placed. For
linear gradients, the offset attribute represents a location along the gradient vector. For
radial gradients, it represents a percentage distance from (fx,fy) to the edge of the
outermost/largest circle.

http://www.w3.org/TR/SVG/pservers.html (9 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/images/pservers/radgrad01.svg

Gradients and Patterns - SVG 1.1 - 20030114

Animatable: yes.

The 'stop-color' property indicates what color to use at that gradient stop. The keyword
currentColor and ICC colors can be specified in the same manner as within a <paint>
specification for the 'fill' and 'stroke' properties.

'stop-color'
Value: currentColor |

<color> [icc-color(<name>[,<icccolorvalue>]*)] |
inherit

Initial: black
Applies to: 'stop' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

The 'stop-opacity' property defines the opacity of a given gradient stop.

'stop-opacity'
Value: <opacity-value> | inherit
Initial: 1
Applies to: 'stop' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

Some notes on gradients:

● Gradient offset values less than 0 (or less than 0%) are rounded up to 0%. Gradient
offset values greater than 1 (or greater than 100%) are rounded down to 100%.

● It is necessary that at least two stops defined to have a gradient effect. If no stops are
defined, then painting shall occur as if 'none' were specified as the paint style. If one stop
is defined, then paint with the solid color fill using the color defined for that gradient stop.

● Each gradient offset value is required to be equal to or greater than the previous gradient
stop's offset value. If a given gradient stop's offset value is not equal to or greater than all
previous offset values, then the offset value is adjusted to be equal to the largest of all
previous offset values.

● If two gradient stops have the same offset value, then the latter gradient stop controls the
color value at the overlap point. In particular:

<stop offset="0" stop-color="white"/>
<stop offset=".2" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

http://www.w3.org/TR/SVG/pservers.html (10 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Gradients and Patterns - SVG 1.1 - 20030114

will have approximately the same effect as:

<stop offset="0" stop-color="white"/>
<stop offset=".1999999999" stop-color="red"/>
<stop offset=".2" stop-color="blue"/>
<stop offset="1" stop-color="black"/>

which is a gradient that goes smoothly from white to red, then abruptly shifts from red to
blue, and then goes smoothly from blue to black.

13.3 Patterns

A pattern is used to fill or stroke an object using a pre-defined graphic object which can be
replicated ("tiled") at fixed intervals in x and y to cover the areas to be painted. Patterns are
defined using a 'pattern' element and then referenced by properties 'fill' and 'stroke' on a given
graphics element to indicate that the given element shall be filled or stroked with the referenced
pattern.

Attributes x, y, width, height and patternUnits define a reference rectangle somewhere on the
infinite canvas. The reference rectangle has its top/left at (x,y) and its bottom/right at (x+width,y
+height). The tiling theoretically extends a series of such rectangles to infinity in X and Y
(positive and negative), with rectangles starting at (x + m*width, y + n*height) for each possible
integer value for m and n.

<!ENTITY % SVG.pattern.extra.content "" >
<!ENTITY % SVG.pattern.element "INCLUDE" >
<![%SVG.pattern.element;[
<!ENTITY % SVG.pattern.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.pattern.extra.content;)*"

>
<!ELEMENT %SVG.pattern.qname; %SVG.pattern.content; >

<!-- end of SVG.pattern.element -->]]>
<!ENTITY % SVG.pattern.attlist "INCLUDE" >
<![%SVG.pattern.attlist;[
<!ATTLIST %SVG.pattern.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.XLink.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

http://www.w3.org/TR/SVG/pservers.html (11 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 patternUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 patternContentUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 patternTransform %TransformList.datatype; #IMPLIED

 viewBox %ViewBoxSpec.datatype; #IMPLIED
 preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
>

Attribute definitions:

patternUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes x, y, width, height.
If patternUnits="userSpaceOnUse", x, y, width, height represent values in the coordinate
system that results from taking the current user coordinate system in place at the time
when the 'pattern' element is referenced (i.e., the user coordinate system for the element
referencing the 'pattern' element via a 'fill' or 'stroke' property) and then applying the
transform specified by attribute patternTransform.
If patternUnits="objectBoundingBox", the user coordinate system for attributes x, y, width,
height is established using the bounding box of the element to which the pattern is
applied (see Object bounding box units) and then applying the transform specified by
attribute patternTransform.
If attribute patternUnits is not specified, then the effect is as if a value of
objectBoundingBox were specified.
Animatable: yes.

patternContentUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the 'pattern'. Note that this attribute has
no effect if attribute viewBox is specified.
If patternContentUnits="userSpaceOnUse", the user coordinate system for the contents of
the 'pattern' element is the coordinate system that results from taking the current user
coordinate system in place at the time when the 'pattern' element is referenced (i.e., the
user coordinate system for the element referencing the 'pattern' element via a 'fill' or
'stroke' property) and then applying the transform specified by attribute patternTransform.
If patternContentUnits="objectBoundingBox", the user coordinate system for the contents
of the 'pattern' element is established using the bounding box of the element to which the
pattern is applied (see Object bounding box units) and then applying the transform
specified by attribute patternTransform.
If attribute patternContentUnits is not specified, then the effect is as if a value of
userSpaceOnUse were specified.
Animatable: yes.

patternTransform = "<transform-list>"
Contains the definition of an optional additional transformation from the pattern
coordinate system onto the target coordinate system (i.e., userSpaceOnUse or
objectBoundingBox). This allows for things such as skewing the pattern tiles. This
additional transformation matrix is post-multiplied to (i.e., inserted to the right of) any
previously defined transformations, including the implicit transformation necessary to
convert from object bounding box units to user space.

http://www.w3.org/TR/SVG/pservers.html (12 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

If attribute patternTransform is not specified, then the effect is as if an identity transform
were specified.
Animatable: yes.

x = "<coordinate>"
x, y, width, height indicate how the pattern tiles are placed and spaced. These
attributes represent coordinates and values in the coordinate space specified by the
combination of attributes patternUnits and patternTransform.
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

y = "<coordinate>"
See x.
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

width = "<length>"
See x.
A negative value is an error (see Error processing). A value of zero disables rendering of
the element (i.e., no paint is applied).
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

height = "<length>"
See x.
A negative value is an error (see Error processing). A value of zero disables rendering of
the element (i.e., no paint is applied).
If the attribute is not specified, the effect is as if a value of zero were specified.
Animatable: yes.

xlink:href = "<uri>"
A URI reference to a different 'pattern' element within the current SVG document
fragment. Any attributes which are defined on the referenced element which are not
defined on this element are inherited by this element. If this element has no children, and
the referenced element does (possibly due to its own href attribute), then this element
inherits the children from the referenced element. Inheritance can be indirect to an
arbitrary level; thus, if the referenced element inherits attributes or children due to its own
href attribute, then the current element can inherit those attributes or children.
Animatable: yes.

SVG's user agent style sheet sets the 'overflow' property for 'pattern' elements to hidden, which
causes a rectangular clipping path to be created at the bounds of the pattern tile. Unless the
'overflow' property is overridden, any graphics within the pattern which goes outside of the
pattern rectangle will be clipped. Example pattern01 below shows the effect of clipping to the
pattern tile.

The contents of the 'pattern' are relative to a new coordinate system. If there is a viewBox
attribute, then the new coordinate system is fitted into the region defined by the x, y, width,
height and patternUnits attributes on the 'pattern' element using the standard rules for viewBox
and preserveAspectRatio. If there is no viewBox attribute, then the new coordinate system has
its origin at (x,y), where x is established by the x attribute on the 'pattern' element, and y is

http://www.w3.org/TR/SVG/pservers.html (13 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Gradients and Patterns - SVG 1.1 - 20030114

established by the y attribute on the 'pattern' element. Thus, in the following example:

<pattern x="10" y="10" width="20" height="20">
 <rect x="5" y="5" width="10" height="10"/>
</pattern>

the rectangle has its top/left located 5 units to the right and 5 units down from the origin of the
pattern tile.

The viewBox attribute introduces a supplemental transformation which is applied on top of any
transformations necessary to create a new pattern coordinate system due to attributes x, y,
width, height and patternUnits.

Properties inherit into the 'pattern' element from its ancestors; properties do not inherit from the
element referencing the 'pattern' element.

'pattern' elements are never rendered directly; their only usage is as something that can be
referenced using the 'fill' and 'stroke' properties. The 'display' property does not apply to the
'pattern' element; thus, 'pattern' elements are not directly rendered even if the 'display' property
is set to a value other than none, and 'pattern' elements are available for referencing even when
the 'display' property on the 'pattern' element or any of its ancestors is set to none.

Event attributes and event listeners attached to the contents of a 'pattern' element are not
processed; only the rendering aspects of 'pattern' elements are processed.

Example pattern01 shows how to fill a rectangle by referencing a pattern paint server. Note
how the blue stroke of each triangle has been clipped at the top and the left. This is due to
SVG's user agent style sheet setting the 'overflow' property for 'pattern' elements to hidden,
which causes the pattern to be clipped to the bounds of the pattern tile.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400"
 xmlns="http://www.w3.org/2000/svg" version="1.1">

 <defs>
 <pattern id="TrianglePattern" patternUnits="userSpaceOnUse"
 x="0" y="0" width="100" height="100"
 viewBox="0 0 10 10" >
 <path d="M 0 0 L 7 0 L 3.5 7 z" fill="red" stroke="blue" />
 </pattern>
 </defs>
 <!-- Outline the drawing area in blue -->
 <rect fill="none" stroke="blue"
 x="1" y="1" width="798" height="398"/>
 <!-- The ellipse is filled using a triangle pattern paint server
 and stroked with black -->
 <ellipse fill="url(#TrianglePattern)" stroke="black" stroke-width="5"
 cx="400" cy="200" rx="350" ry="150" />
</svg>

http://www.w3.org/TR/SVG/pservers.html (14 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/svgdom.html#EventListeners
http://www.w3.org/2000/svg

Gradients and Patterns - SVG 1.1 - 20030114

Example pattern01

View this example as SVG (SVG-enabled browsers only)

13.4 Gradient Module

Elements Attributes Content Model

linearGradient

Core.attrib, XLink.attrib, Paint.attrib, Gradient.
attrib, Style.attrib, External.attrib,
gradientUnits, gradientTransform, x1, y1, x2,
y2, spreadMethod

(Description.class | Animation.
class | stop)*

radialGradient

Core.attrib, XLink.attrib, Paint.attrib, Gradient.
attrib, Style.attrib, External.attrib,
gradientUnits, gradientTransform, cx, cy, r, fx,
fy, spreadMethod

(Description.class | Animation.
class | stop)*

stop
Core.attrib, Style.attrib, Paint.attrib, Gradient.
attrib, offset

(Description.class | Animation.
class)*

13.4.1 Gradient Content Set

The Gradient Module defines the Gradient.class content set.

Content Set Name Elements in Content Set

Gradient.class linearGradient, radialGradient

13.4.2 Gradient Attribute Set

The Gradient Module defines the Gradient.attrib attribute set.

Collection Name Attributes in Collection

Gradient.attrib stop-color, stop-opacity

http://www.w3.org/TR/SVG/pservers.html (15 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/images/pservers/pattern01.svg

Gradients and Patterns - SVG 1.1 - 20030114

13.5 Pattern Module

Elements Attributes Content Model

pattern

Core.attrib,, XLink.attrib, Conditional.attrib,
External.attrib, Style.attrib, Presentation.attrib,
viewBox, preserveAspectRatio, patternUnits,
patternTransform, x, y, width, height

(Description.class | Structure.
class | Shape.class | Text.
class | Image.class |
Hyperlink.class | Script.class |
Style.class | Clip.class | Mask.
class | Gradient.class |
Pattern.class | Filter.class |
Cursor.class | Font.class |
ColorProfile.class | Animation.
class)*

13.5.1 Pattern Content Set

The Pattern Module defines the Pattern.class content set.

Content Set Name Elements in Content Set

Pattern.class pattern

13.6 DOM interfaces

The following interfaces are defined below: SVGGradientElement, SVGLinearGradientElement,
SVGRadialGradientElement, SVGStopElement, SVGPatternElement.

Interface SVGGradientElement

The SVGGradientElement interface is a base interface used by SVGLinearGradientElement
and SVGRadialGradientElement.

IDL Definition

interface SVGGradientElement :
 SVGElement,
 SVGURIReference,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGUnitTypes {
 // Spread Method Types
 const unsigned short SVG_SPREADMETHOD_UNKNOWN = 0;

http://www.w3.org/TR/SVG/pservers.html (16 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

 const unsigned short SVG_SPREADMETHOD_PAD = 1;
 const unsigned short SVG_SPREADMETHOD_REFLECT = 2;
 const unsigned short SVG_SPREADMETHOD_REPEAT = 3;
 readonly attribute SVGAnimatedEnumeration gradientUnits;
 readonly attribute SVGAnimatedTransformList gradientTransform;
 readonly attribute SVGAnimatedEnumeration spreadMethod;
};

Definition group Spread Method Types

Defined constants
SVG_SPREADMETHOD_UNKNOWN The type is not one of predefined types. It

is invalid to attempt to define a new value
of this type or to attempt to switch an
existing value to this type.

SVG_SPREADMETHOD_PAD Corresponds to value pad.

SVG_SPREADMETHOD_REFLECT Corresponds to value reflect.

SVG_SPREADMETHOD_REPEAT Corresponds to value repeat.
Attributes

readonly SVGAnimatedEnumeration gradientUnits
Corresponds to attribute gradientUnits on the given element. Takes one of the
constants defined in SVGUnitTypes.

readonly SVGAnimatedTransformList gradientTransform
Corresponds to attribute gradientTransform on the given element.

readonly SVGAnimatedEnumeration spreadMethod
Corresponds to attribute spreadMethod on the given element. One of the Spread
Method Types.

Interface SVGLinearGradientElement

The SVGLinearGradientElement interface corresponds to the 'linearGradient' element.

IDL Definition

interface SVGLinearGradientElement : SVGGradientElement {
 readonly attribute SVGAnimatedLength x1;
 readonly attribute SVGAnimatedLength y1;
 readonly attribute SVGAnimatedLength x2;
 readonly attribute SVGAnimatedLength y2;
};

Attributes

http://www.w3.org/TR/SVG/pservers.html (17 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

readonly SVGAnimatedLength x1
Corresponds to attribute x1 on the given 'linearGradient' element.

readonly SVGAnimatedLength y1
Corresponds to attribute y1 on the given 'linearGradient' element.

readonly SVGAnimatedLength x2
Corresponds to attribute x2 on the given 'linearGradient' element.

readonly SVGAnimatedLength y2
Corresponds to attribute y2 on the given 'linearGradient' element.

Interface SVGRadialGradientElement

The SVGRadialGradientElement interface corresponds to the 'radialGradient' element.

IDL Definition

interface SVGRadialGradientElement : SVGGradientElement {
 readonly attribute SVGAnimatedLength cx;
 readonly attribute SVGAnimatedLength cy;
 readonly attribute SVGAnimatedLength r;
 readonly attribute SVGAnimatedLength fx;
 readonly attribute SVGAnimatedLength fy;
};

Attributes

readonly SVGAnimatedLength cx
Corresponds to attribute cx on the given 'radialGradient' element.

readonly SVGAnimatedLength cy
Corresponds to attribute cy on the given 'radialGradient' element.

readonly SVGAnimatedLength r
Corresponds to attribute r on the given 'radialGradient' element.

readonly SVGAnimatedLength fx
Corresponds to attribute fx on the given 'radialGradient' element.

readonly SVGAnimatedLength fy
Corresponds to attribute fy on the given 'radialGradient' element.

Interface SVGStopElement

The SVGStopElement interface corresponds to the 'stop' element.

IDL Definition

http://www.w3.org/TR/SVG/pservers.html (18 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

interface SVGStopElement :
 SVGElement,
 SVGStylable {
 readonly attribute SVGAnimatedNumber offset;
};

Attributes

readonly SVGAnimatedNumber offset
Corresponds to attribute offset on the given 'stop' element.

Interface SVGPatternElement

The SVGPatternElement interface corresponds to the 'pattern' element.

IDL Definition

interface SVGPatternElement :
 SVGElement,
 SVGURIReference,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGFitToViewBox,
 SVGUnitTypes {
 readonly attribute SVGAnimatedEnumeration patternUnits;
 readonly attribute SVGAnimatedEnumeration patternContentUnits;
 readonly attribute SVGAnimatedTransformList patternTransform;
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
};

Attributes

readonly SVGAnimatedEnumeration patternUnits
Corresponds to attribute patternUnits on the given 'pattern' element. Takes one of
the constants defined in SVGUnitTypes.

readonly SVGAnimatedEnumeration patternContentUnits
Corresponds to attribute patternContentUnits on the given 'pattern' element. Takes
one of the constants defined in SVGUnitTypes.

readonly SVGAnimatedTransformList patternTransform
Corresponds to attribute patternTransform on the given 'pattern' element.

http://www.w3.org/TR/SVG/pservers.html (19 of 20)4/2/07 7:18 PM

Gradients and Patterns - SVG 1.1 - 20030114

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'pattern' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'pattern' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'pattern' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'pattern' element.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/pservers.html (20 of 20)4/2/07 7:18 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Clipping, Masking and Compositing - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

14 Clipping, Masking and Compositing

Contents

● 14.1 Introduction
● 14.2 Simple alpha compositing
● 14.3 Clipping paths

❍ 14.3.1 Introduction
❍ 14.3.2 The initial clipping path
❍ 14.3.3 The 'overflow' and 'clip' properties
❍ 14.3.4 Clip to viewport vs. clip to viewBox

❍ 14.3.5 Establishing a new clipping path
● 14.4 Masking
● 14.5 Object and group opacity: the 'opacity' property
● 14.6 Clip Module
● 14.7 Basic Clip Module
● 14.8 Mask Module
● 14.9 DOM interfaces

14.1 Introduction

SVG supports the following clipping/masking features:

● clipping paths, which uses any combination of 'path', 'text' and basic shapes to serve as the outline
of a (in the absence of anti-aliasing) 1-bit mask, where everything on the "inside" of the outline is
allowed to show through but everything on the outside is masked out

● masks, which are container elements which can contain graphics elements or other container
elements which define a set of graphics that is to be used as a semi-transparent mask for
compositing foreground objects into the current background.

One key distinction between a clipping path and a mask is that clipping paths are hard masks (i.e., the
silhouette consists of either fully opaque pixels or fully transparent pixels, with the possible exception of
anti-aliasing along the edge of the silhouette) whereas masks consist of an image where each pixel value
indicates the degree of transparency vs. opacity. In a mask, each pixel value can range from fully
transparent to fully opaque.

http://www.w3.org/TR/SVG/masking.html (1 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Clipping, Masking and Compositing - SVG 1.1 - 20030114

SVG supports only simple alpha blending compositing (see Simple Alpha Compositing).

14.2 Simple alpha compositing

Graphics elements are blended into the elements already rendered on the canvas using simple alpha
compositing, in which the resulting color and opacity at any given pixel on the canvas is the result of the
following formulas (all color values use premultiplied alpha):

Er, Eg, Eb - Element color value
Ea - Element alpha value
Cr, Cg, Cb - Canvas color value (before blending)
Ca - Canvas alpha value (before blending)
Cr', Cg', Cb' - Canvas color value (after blending)
Ca' - Canvas alpha value (after blending)
Ca' = 1 - (1 - Ea) * (1 - Ca)
Cr' = (1 - Ea) * Cr + Er
Cg' = (1 - Ea) * Cg + Eg
Cb' = (1 - Ea) * Cb + Eb

The following rendering properties, which provide information about the color space in which to perform
the compositing operations, apply to compositing operations:

● 'color-interpolation'
● 'color-rendering'

14.3 Clipping paths

14.3.1 Introduction

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the drawing
that lie outside of the region bounded by the currently active clipping path are not drawn. A clipping path
can be thought of as a mask wherein those pixels outside the clipping path are black with an alpha value
of zero and those pixels inside the clipping path are white with an alpha value of one (with the possible
exception of anti-aliasing along the edge of the silhouette).

14.3.2 The initial clipping path

When an 'svg' element is either the root element in the document or is embedded within a document
whose layout is determined according to the layout rules of CSS or XSL, then the user agent must
establish an initial clipping path for the SVG document fragment. The 'overflow' and 'clip' properties along
with additional SVG user agent processing rules determine the initial clipping path which the user agent
establishes for the SVG document fragment:

14.3.3 The 'overflow' and 'clip' properties

'overflow'

Value: visible | hidden | scroll | auto | inherit
Initial: see prose

http://www.w3.org/TR/SVG/masking.html (2 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Clipping, Masking and Compositing - SVG 1.1 - 20030114

Applies to: elements which establish a new viewport, 'pattern' elements and 'marker' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

The 'overflow' property has the same parameter values and has the same meaning as defined in [CSS2-
overflow]; however, the following additional points apply:

● The 'overflow' property applies to elements that establish new viewports (e.g., 'svg' elements),
'pattern' elements and 'marker' elements. For all other elements, the property has no effect (i.e., a
clipping rectangle is not created).

● For those elements to which the 'overflow' property can apply, if the 'overflow' property has the
value hidden or scroll, the effect is that a new clipping path in the shape of a rectangle is created.
The result is equivalent to defining a 'clipPath' element whose content is a 'rect' element which
defines the equivalent rectangle, and then specifying the <uri> of this 'clipPath' element on the 'clip-
path' property for the given element.

● If the 'overflow' property has a value other than hidden or scroll, the property has no effect (i.e., a
clipping rectangle is not created).

● Within SVG content, the value auto is equivalent to the value visible.
● When an outermost 'svg' element is embedded inline within a parent XML grammar which uses

CSS layout [CSS2-LAYOUT] or XSL formatting [XSL], if the 'overflow' property has the value hidden
or scroll, then the user agent will establish an initial clipping path equal to the bounds of the initial
viewport; otherwise, the initial clipping path is set according to the clipping rules as defined in
[CSS2-overflow].

● When an outermost SVG 'svg' element is stand-alone or embedded inline within a parent XML
grammar which does not use CSS layout [CSS2-LAYOUT] or XSL formatting [XSL], the 'overflow'
property on the outermost 'svg' element is ignored for the purposes of visual rendering and the
initial clipping path is set to the bounds of the initial viewport.

● The initial value for 'overflow' as defined in [CSS2-overflow] is 'visible'; however, SVG's user agent
style sheet overrides this initial value and set the 'overflow' property on elements that establish new
viewports (e.g., 'svg' elements), 'pattern' elements and 'marker' elements to the value 'hidden'.

As a result of the above, the default behavior of SVG user agents is to establish a clipping path to the
bounds of the initial viewport and to establish a new clipping path for each element which establishes a
new viewport and each 'pattern' and 'marker' element.

For related information, see Clip to viewport vs. clip to viewBox.

'clip'
Value: <shape> | auto | inherit
Initial: auto
Applies to: elements which establish a new viewport, 'pattern' elements and 'marker' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

The 'clip' property has the same parameter values as defined in [CSS2-clip]. Unitless values, which
indicate current user coordinates, are permitted on the coordinate values on the <shape>. The value of
"auto" defines a clipping path along the bounds of the viewport created by the given element.

http://www.w3.org/TR/SVG/masking.html (3 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/REC-CSS2/visufx.html#overflow
http://www.w3.org/TR/REC-CSS2/visufx.html#overflow
http://www.w3.org/TR/REC-CSS2/visuren.html
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visufx.html#overflow
http://www.w3.org/TR/REC-CSS2/visuren.html
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visufx.html#overflow
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#clipping

Clipping, Masking and Compositing - SVG 1.1 - 20030114

14.3.4 Clip to viewport vs. clip to viewBox

It is important to note that initial values for the 'overflow' and 'clip' properties and the user agent style
sheet will result in an initial clipping path that is set to the bounds of the initial viewport. When attributes
viewBox and preserveAspectRatio attributes are specified, it is sometime desirable that the clipping path
be set to the bounds of the viewBox instead of the viewport (or reference rectangle, in the case of 'marker'
and 'pattern' elements), particularly when preserveAspectRatio specifies uniform scaling and the aspect
ratio of the viewBox does not match the aspect ratio of the viewport.

To set the initial clipping path to the bounds of the viewBox, set the bounds of 'clip' property to the same
rectangle as specified on the viewBox attribute. (Note that the parameters do not match. 'clip' takes values
<top>, <right>,<bottom> and <left>, whereas viewBox takes values <min-x>, <min-y>, <width> and
<height>.)

14.3.5 Establishing a new clipping path

A clipping path is defined with a 'clipPath' element. A clipping path is used/referenced using the 'clip-path'
property.

A 'clipPath' element can contain 'path' elements, 'text' elements, basic shapes (such as 'circle') or a 'use'
element. If a 'use' element is a child of a 'clipPath' element, it must directly reference 'path', 'text' or basic
shape elements. Indirect references are an error (see Error processing).

The raw geometry of each child element exclusive of rendering properties such as 'fill', 'stroke', 'stroke-
width' within a 'clipPath' conceptually defines a 1-bit mask (with the possible exception of anti-aliasing
along the edge of the geometry) which represents the silhouette of the graphics associated with that
element. Anything outside the outline of the object is masked out. When the 'clipPath' element contains
multiple child elements, the silhouettes of the child elements are logically OR'd together to create a single
silhouette which is then used to restrict the region onto which paint can be applied. Thus, a point is inside
the clipping path if it is inside any of the children of the 'clipPath'.

It is an error if the 'clip-path' property references a non-existent object or if the referenced object is not a
'clipPath' element (see Error processing).

For a given graphics element, the actual clipping path used will be the intersection of the clipping path
specified by its 'clip-path' property (if any) with any clipping paths on its ancestors, as specified by the 'clip-
path' property on the ancestor elements, or by the 'overflow' property on ancestor elements which
establish a new viewport. Also, see the discussion of the initial clipping path.)

A couple of notes:

● The 'clipPath' element itself and its child elements do not inherit clipping paths from the ancestors of
the 'clipPath' element.

● The 'clipPath' element or any of its children can specify property 'clip-path'.
If a valid 'clip-path' reference is placed on a 'clipPath' element, the resulting clipping path is the
intersection of the contents of the 'clipPath' element with the referenced clipping path.
If a valid 'clip-path' reference is placed on one of the children of a 'clipPath' element, then the given
child element is clipped by the referenced clipping path before OR'ing the silhouette of the child
element with the silhouettes of the other child elements.

http://www.w3.org/TR/SVG/masking.html (4 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Clipping, Masking and Compositing - SVG 1.1 - 20030114

<!ENTITY % SVG.clipPath.extra.content "" >
<!ENTITY % SVG.clipPath.element "INCLUDE" >
<![%SVG.clipPath.element;[
<!ENTITY % SVG.clipPath.content
 "((%SVG.Description.class;)*, (%SVG.Animation.class; %SVG.Use.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.clipPath.extra.content;)*)"

>
<!ELEMENT %SVG.clipPath.qname; %SVG.clipPath.content; >

<!-- end of SVG.clipPath.element -->]]>
<!ENTITY % SVG.clipPath.attlist "INCLUDE" >
<![%SVG.clipPath.attlist;[
<!ATTLIST %SVG.clipPath.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Text.attrib;

 %SVG.TextContent.attrib;

 %SVG.Font.attrib;

 %SVG.Paint.attrib;

 %SVG.Color.attrib;

 %SVG.Opacity.attrib;

 %SVG.Graphics.attrib;

 %SVG.Clip.attrib;

 %SVG.Mask.attrib;

 %SVG.Filter.attrib;

 %SVG.Cursor.attrib;

 %SVG.External.attrib;

 transform %TransformList.datatype; #IMPLIED

 clipPathUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
>

Attribute definitions:

clipPathUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the 'clipPath'.
If clipPathUnits="userSpaceOnUse", the contents of the 'clipPath' represent values in the current
user coordinate system in place at the time when the 'clipPath' element is referenced (i.e., the user
coordinate system for the element referencing the 'clipPath' element via the 'clip-path' property).
If clipPathUnits="objectBoundingBox", then the user coordinate system for the contents of the
'clipPath' element is established using the bounding box of the element to which the clipping path is
applied (see Object bounding box units).
If attribute clipPathUnits is not specified, then the effect is as if a value of userSpaceOnUse were
specified.
Animatable: yes.

Properties inherit into the 'clipPath' element from its ancestors; properties do not inherit from the element
referencing the 'clipPath' element.

'clipPath' elements are never rendered directly; their only usage is as something that can be referenced

http://www.w3.org/TR/SVG/masking.html (5 of 15)4/2/07 7:19 PM

Clipping, Masking and Compositing - SVG 1.1 - 20030114

using the 'clip-path' property. The 'display' property does not apply to the 'clipPath' element; thus, 'clipPath'
elements are not directly rendered even if the 'display' property is set to a value other than none, and
'clipPath' elements are available for referencing even when the 'display' property on the 'clipPath' element
or any of its ancestors is set to none.

'clip-path'
Value: <uri> | none | inherit
Initial: none
Applies to: container elements and graphics elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

<uri>
A URI reference to another graphical object within the same SVG document fragment which will be
used as the clipping path.

'clip-rule'
Value: nonzero | evenodd | inherit
Initial: nonzero
Applies to: graphics elements within a 'clipPath' element
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

nonzero
See description of 'fill-rule' property.

evenodd
See description of 'fill-rule' property.

The 'clip-rule' property only applies to graphics elements that are contained within a 'clipPath' element.
The following fragment of code will cause an evenodd clipping rule to be applied to the clipping path
because 'clip-rule' is specified on the 'path' element that defines the clipping shape:

<g clip-rule="nonzero">
 <clipPath id="MyClip">
 <path d="..." clip-rule="evenodd" />
 </clipPath>
 <rect clip-path="url(#MyClip)" ... />
</g>

whereas the following fragment of code will not cause an evenodd clipping rule to be applied because the
'clip-rule' is specified on the referencing element, not on the object defining the clipping shape:

<g clip-rule="nonzero">
 <clipPath id="MyClip">
 <path d="..." />
 </clipPath>
 <rect clip-path="url(#MyClip)" clip-rule="evenodd" ... />

http://www.w3.org/TR/SVG/masking.html (6 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Clipping, Masking and Compositing - SVG 1.1 - 20030114

</g>

14.4 Masking

In SVG, you can specify that any other graphics object or 'g' element can be used as an alpha mask for
compositing the current object into the background.

A mask is defined with a 'mask' element. A mask is used/referenced using the 'mask' property.

A 'mask' can contain any graphical elements or container elements such as a 'g'.

It is an error if the 'mask' property references a non-existent object or if the referenced object is not a
'mask' element (see Error Processing).

The effect is as if the child elements of the 'mask' are rendered into an offscreen image which has been
initialized to transparent black. Any graphical object which uses/references the given 'mask' element will
be painted onto the background through the mask, thus completely or partially masking out parts of the
graphical object.

For any graphics object that is used as a mask, the mask value at any point is computed from the color
channel values and alpha channel value as follows. A linear luminance value is computed from the color
channel values. This can be done, for example, by first converting the original image color values
(potentially in the sRGB color space) to the linear RGB color space (see Rendering properties). Then,
using non-premultiplied linear RGB color values, apply the luminance-to-alpha coefficients (as defined in
the 'feColorMatrix' filter primitive) to convert the linear RGB color values to linear luminance values. If the
graphics object also includes an alpha channel, then the computed linear luminance value is multiplied by
the corresponding alpha value to produce the mask value.

For a four-channel RGBA graphics object that is used as a mask, both the color channels and the alpha
channel of the mask contribute to the masking operation. The alpha mask that is used to composite the
current object into the background represents the product of the luminance of the color channels (see
previous paragraph) and the alpha channel from the mask.

For a three-channel RGB graphics object that is used as a mask (e.g., when referencing a 3-channel
image file), the effect is as if the object were converted into a 4-channel RGBA image with the alpha
channel uniformly set to 1.

For a single-channel image that is used as a mask (e.g., when referencing a 1-channel grayscale image
file), the effect is as if the object were converted into a 4-channel RGBA image, where the single channel
from the referenced object is used to compute the three color channels and the alpha channel is uniformly
set to 1. Note that when referencing a grayscale image file, the transfer curve relating the encoded
grayscale values to linear light values must be taken into account when computing the color channels.

The effect of a mask is identical to what would have happened if there were no mask but instead the alpha
channel of the given object were multiplied with the mask's resulting alpha values (i.e., the product of the
mask's luminance from its color channels multiplied by the mask's alpha channel).

Note that SVG 'path''s, shapes (e.g., 'circle') and 'text' are all treated as four-channel RGBA images for the
purposes of masking operations.

Example mask01 uses an image to mask a rectangle.

http://www.w3.org/TR/SVG/masking.html (7 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Clipping, Masking and Compositing - SVG 1.1 - 20030114

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="3cm" viewBox="0 0 800 300" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example mask01 - blue text masked with gradient against red background
 </desc>
 <defs>
 <linearGradient id="Gradient" gradientUnits="userSpaceOnUse"
 x1="0" y1="0" x2="800" y2="0">
 <stop offset="0" stop-color="white" stop-opacity="0" />
 <stop offset="1" stop-color="white" stop-opacity="1" />
 </linearGradient>
 <mask id="Mask" maskUnits="userSpaceOnUse"
 x="0" y="0" width="800" height="300">
 <rect x="0" y="0" width="800" height="300" fill="url(#Gradient)" />
 </mask>
 <text id="Text" x="400" y="200"
 font-family="Verdana" font-size="100" text-anchor="middle" >
 Masked text
 </text>
 </defs>
 <!-- Draw a pale red rectangle in the background -->
 <rect x="0" y="0" width="800" height="300" fill="#FF8080" />

 <!-- Draw the text string twice. First, filled blue, with the mask applied.
 Second, outlined in black without the mask. -->
 <use xlink:href="#Text" fill="blue" mask="url(#Mask)" />
 <use xlink:href="#Text" fill="none" stroke="black" stroke-width="2" />
</svg>

Example mask01

View this example as SVG (SVG-enabled browsers only)

<!ENTITY % SVG.mask.extra.content "" >
<!ENTITY % SVG.mask.element "INCLUDE" >
<![%SVG.mask.element;[
<!ENTITY % SVG.mask.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.mask.extra.content;)*"

>
<!ELEMENT %SVG.mask.qname; %SVG.mask.content; >

http://www.w3.org/TR/SVG/masking.html (8 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/images/masking/mask01.svg

Clipping, Masking and Compositing - SVG 1.1 - 20030114

<!-- end of SVG.mask.element -->]]>
<!ENTITY % SVG.mask.attlist "INCLUDE" >
<![%SVG.mask.attlist;[
<!ATTLIST %SVG.mask.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 maskUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 maskContentUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
>

Attribute definitions:

maskUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes x, y, width, height.
If maskUnits="userSpaceOnUse", x, y, width, height represent values in the current user coordinate
system in place at the time when the 'mask' element is referenced (i.e., the user coordinate system
for the element referencing the 'mask' element via the 'mask' property).
If maskUnits="objectBoundingBox", x, y, width, height represent fractions or percentages of the
bounding box of the element to which the mask is applied. (See Object bounding box units.)
If attribute maskUnits is not specified, then the effect is as if a value of objectBoundingBox were
specified.
Animatable: yes.

maskContentUnits = "userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for the contents of the 'mask'.
If maskContentUnits="userSpaceOnUse", the user coordinate system for the contents of the 'mask'
element is the current user coordinate system in place at the time when the 'mask' element is
referenced (i.e., the user coordinate system for the element referencing the 'mask' element via the
'mask' property).
If maskContentUnits="objectBoundingBox", the user coordinate system for the contents of the
'mask' is established using the bounding box of the element to which the mask is applied. (See
Object bounding box units.)
If attribute maskContentUnits is not specified, then the effect is as if a value of userSpaceOnUse
were specified.
Animatable: yes.

x = "<coordinate>"
The x-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer. Note
that the clipping path used to render any graphics within the mask will consist of the intersection of
the current clipping path associated with the given object and the rectangle defined by x, y, width,
height.
If the attribute is not specified, the effect is as if a value of "-10%" were specified.
Animatable: yes.

y = "<coordinate>"
The y-axis coordinate of one corner of the rectangle for the largest possible offscreen buffer.
If the attribute is not specified, the effect is as if a value of "-10%" were specified.
Animatable: yes.

width = "<length>"

http://www.w3.org/TR/SVG/masking.html (9 of 15)4/2/07 7:19 PM

Clipping, Masking and Compositing - SVG 1.1 - 20030114

The width of the largest possible offscreen buffer. Note that the clipping path used to render any
graphics within the mask will consist of the intersection of the current clipping path associated with
the given object and the rectangle defined by x, y, width, height.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
If the attribute is not specified, the effect is as if a value of "120%" were specified.
Animatable: yes.

height = "<length>"
The height of the largest possible offscreen buffer.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
If the attribute is not specified, the effect is as if a value of "120%" were specified.
Animatable: yes.

Properties inherit into the 'mask' element from its ancestors; properties do not inherit from the element
referencing the 'mask' element.

'mask' elements are never rendered directly; their only usage is as something that can be referenced
using the 'mask' property. The 'display' property does not apply to the 'mask' element; thus, 'mask'
elements are not directly rendered even if the 'display' property is set to a value other than none, and
'mask' elements are available for referencing even when the 'display' property on the 'mask' element or
any of its ancestors is set to none.

The following is a description of the 'mask' property.

'mask'
Value: <uri> | none | inherit
Initial: none
Applies to: container elements and graphics elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

<uri>
A URI reference to another graphical object which will be used as the mask.

14.5 Object and group opacity: the 'opacity' property

There are several opacity properties within SVG:

● Fill opacity
● Stroke opacity
● Gradient stop opacity
● Object/group opacity (described here)

Except for object/group opacity (described just below), all other opacity properties are involved in
intermediate rendering operations. Object/group opacity can be thought of conceptually as a
postprocessing operation. Conceptually, after the object/group is rendered into an RGBA offscreen image,
the object/group opacity setting specifies how to blend the offscreen image into the current background.

http://www.w3.org/TR/SVG/masking.html (10 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Clipping, Masking and Compositing - SVG 1.1 - 20030114

'opacity'
Value: <opacity-value> | inherit
Initial: 1
Applies to: container elements and graphics elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

<opacity-value>
The uniform opacity setting to be applied across an entire object. Any values outside the range 0.0
(fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which
are restricted to a particular range.) If the object is a container element such as a 'g', then the effect
is as if the contents of the 'g' were blended against the current background using a mask where the
value of each pixel of the mask is <opacity-value>. (See Simple alpha compositing.)

Example opacity01, illustrates various usage of the 'opacity' property on elements and groups.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg width="12cm" height="3.5cm" viewBox="0 0 1200 350"
 xmlns="http://www.w3.org/2000/svg">
 <desc>Example opacity01 - opacity property</desc>
 <rect x="1" y="1" width="1198" height="348"
 fill="none" stroke="blue" />
 <!-- Background blue rectangle -->
 <rect x="100" y="100" width="1000" height="150" fill="#0000ff" />
 <!-- Red circles going from opaque to nearly transparent -->
 <circle cx="200" cy="100" r="50" fill="red" opacity="1" />
 <circle cx="400" cy="100" r="50" fill="red" opacity=".8" />
 <circle cx="600" cy="100" r="50" fill="red" opacity=".6" />
 <circle cx="800" cy="100" r="50" fill="red" opacity=".4" />
 <circle cx="1000" cy="100" r="50" fill="red" opacity=".2" />
 <!-- Opaque group, opaque circles -->
 <g opacity="1" >
 <circle cx="182.5" cy="250" r="50" fill="red" opacity="1" />
 <circle cx="217.5" cy="250" r="50" fill="green" opacity="1" />
 </g>
 <!-- Group opacity: .5, opacity circles -->
 <g opacity=".5" >
 <circle cx="382.5" cy="250" r="50" fill="red" opacity="1" />
 <circle cx="417.5" cy="250" r="50" fill="green" opacity="1" />
 </g>
 <!-- Opaque group, semi-transparent green over red -->
 <g opacity="1" >
 <circle cx="582.5" cy="250" r="50" fill="red" opacity=".5" />
 <circle cx="617.5" cy="250" r="50" fill="green" opacity=".5" />
 </g>
 <!-- Opaque group, semi-transparent red over green -->
 <g opacity="1" >
 <circle cx="817.5" cy="250" r="50" fill="green" opacity=".5" />
 <circle cx="782.5" cy="250" r="50" fill="red" opacity=".5" />
 </g>
 <!-- Group opacity .5, semi-transparent green over red -->
 <g opacity=".5" >
 <circle cx="982.5" cy="250" r="50" fill="red" opacity=".5" />

http://www.w3.org/TR/SVG/masking.html (11 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/implnote.html#RangeClamping
http://www.w3.org/TR/SVG/implnote.html#RangeClamping

Clipping, Masking and Compositing - SVG 1.1 - 20030114

 <circle cx="1017.5" cy="250" r="50" fill="green" opacity=".5" />
 </g>
</svg>

Example opacity01

View this example as SVG (SVG-enabled browsers only)

In the example above, the top row of circles have differing opacities, ranging from 1.0 to 0.2. The bottom
row illustrates five 'g' elements, each of which contains overlapping red and green circles, as follows:

● The first group shows the opaque case for reference. The group has opacity of 1, as do the circles.
● The second group shows group opacity when the elements in the group are opaque.
● The third and fourth group show that opacity is not commutative. In the third group (which has

opacity of 1), a semi-transparent green circle is drawn on top of a semi-transparent red circle,
whereas in the fourth group a semi-transparent red circle is drawn on top of a semi-transparent
green circle. Note that area where the two circles intersect display different colors. The third group
shows more green color in the intersection area, whereas the fourth group shows more red color.

● The fifth group shows the multiplicative effect of opacity settings. Both the circles and the group
itself have opacity settings of .5. The result is that the portion of the red circle which does not
overlap with the green circle (i.e., the top/right of the red circle) will blend into the blue rectangle
with accumulative opacity of .25 (i.e., .5*.5), which, after blending into the blue rectangle, results in
a blended color which is 25% red and 75% blue.

14.6 Clip Module

Elements Attributes Content Model

clipPath

Core.attrib, Conditional.attrib, External.
attrib, Style.attrib, Paint.attrib, Font.attrib,
TextContent.attrib, Text.attrib, Opacity.
attrib, Graphics.attrib, Filter.attrib, Mask.
attrib, GraphicalEvents.attrib, Clip.attrib,
transform, clipPathUnits

(Description.class | GraphicsElements | Text.
class | Use.class | Animation.class)*

14.6.1 Clip Content Set

The Clip Module defines the Clip.class content set.

Content Set Name Elements in Content Set

Clip.class clipPath

http://www.w3.org/TR/SVG/masking.html (12 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/images/masking/opacity01.svg

Clipping, Masking and Compositing - SVG 1.1 - 20030114

14.6.2 Clip Attribute Set

The Clip Module defines the Clip.attrib attribute set.

Collection Name Attributes in Collection

Clip.attrib clip-path, clip-rule

14.7 Basic Clip Module

Elements Attributes Content Model

clipPath

Core.attrib, Conditional.attrib, External.
attrib, Style.attrib, Paint.attrib, Font.attrib,
TextContent.attrib, Text.attrib, Opacity.
attrib, Graphics.attrib, Filter.attrib, Mask.
attrib, GraphicalEvents.attrib, Clip.attrib,
transform, clipPathUnits

(Description.class* | GraphicsElements | Text.
class | Use.class | Animation.class*)

14.7.1 Basic Clip Content Set

The Basic Clip Module defines the Clip.class content set.

Content Set Name Elements in Content Set

Clip.class clipPath

14.7.2 Basic Clip Attribute Set

The Basic Clip Module defines the Clip.attrib attribute set.

Collection Name Attributes in Collection

Clip.attrib clip-path, clip-rule

14.8 Mask Module

Elements Attributes Content Model

mask
Core.attrib, Conditional.attrib, External.attrib,
Style.attrib, Presentation.attrib, maskUnits,
maskContentUnits, x, y, width, height

(Description.class | Structure.class |
GraphicsElements | Text.class | Image.class
| Script.class | Style.class | Marker.class |
Clip.class | Mask.class | Gradient.class |
Pattern.class | Filter.class | Cursor.class |
Font.class | ColorProfile.class | Animation.
class)*

14.8.1 Mask Content Set

The Mask Module defines the Mask.class content set.

http://www.w3.org/TR/SVG/masking.html (13 of 15)4/2/07 7:19 PM

Clipping, Masking and Compositing - SVG 1.1 - 20030114

Content Set Name Elements in Content Set

Mask.class mask

14.8.2 Mask Attribute Set

The Mask Module defines the Mask.attrib attribute set.

Collection Name Attributes in Collection

Mask.attrib mask

14.9 DOM interfaces

The following interfaces are defined below: SVGClipPathElement, SVGMaskElement.

Interface SVGClipPathElement

The SVGClipPathElement interface corresponds to the 'clipPath' element.

IDL Definition

interface SVGClipPathElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 SVGUnitTypes {
 readonly attribute SVGAnimatedEnumeration clipPathUnits;
};

Attributes

readonly SVGAnimatedEnumeration clipPathUnits
Corresponds to attribute clipPathUnits on the given 'clipPath' element. Takes one of the
constants defined in SVGUnitTypes.

Interface SVGMaskElement

The SVGMaskElement interface corresponds to the 'mask' element.

IDL Definition

http://www.w3.org/TR/SVG/masking.html (14 of 15)4/2/07 7:19 PM

Clipping, Masking and Compositing - SVG 1.1 - 20030114

interface SVGMaskElement :
 SVGElement,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGUnitTypes {
 readonly attribute SVGAnimatedEnumeration maskUnits;
 readonly attribute SVGAnimatedEnumeration maskContentUnits;
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
};

Attributes

readonly SVGAnimatedEnumeration maskUnits
Corresponds to attribute maskUnits on the given 'mask' element. Takes one of the constants
defined in SVGUnitTypes.

readonly SVGAnimatedEnumeration maskContentUnits
Corresponds to attribute maskContentUnits on the given 'mask' element. Takes one of the
constants defined in SVGUnitTypes.

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'mask' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'mask' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'mask' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'mask' element.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/masking.html (15 of 15)4/2/07 7:19 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Filter Effects - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

15 Filter Effects

Contents

● 15.1 Introduction
● 15.2 An example
● 15.3 The 'filter' element
● 15.4 The 'filter' property
● 15.5 Filter effects region
● 15.6 Accessing the background image
● 15.7 Filter primitives overview

❍ 15.7.1 Overview
❍ 15.7.2 Common attributes
❍ 15.7.3 Filter primitive subregion

● 15.8 Light source elements and properties
❍ 15.8.1 Introduction
❍ 15.8.2 Light source 'feDistantLight'

❍ 15.8.3 Light source 'fePointLight'

❍ 15.8.4 Light source 'feSpotLight'

❍ 15.8.5 The 'lighting-color' property
● 15.9 Filter primitive 'feBlend'

● 15.10 Filter primitive 'feColorMatrix'

● 15.11 Filter primitive 'feComponentTransfer'

● 15.12 Filter primitive 'feComposite'

● 15.13 Filter primitive 'feConvolveMatrix'

● 15.14 Filter primitive 'feDiffuseLighting'

● 15.15 Filter primitive 'feDisplacementMap'

● 15.16 Filter primitive 'feFlood'

● 15.17 Filter primitive 'feGaussianBlur'

● 15.18 Filter primitive 'feImage'

● 15.19 Filter primitive 'feMerge'

● 15.20 Filter primitive 'feMorphology'

● 15.21 Filter primitive 'feOffset'

● 15.22 Filter primitive 'feSpecularLighting'

● 15.23 Filter primitive 'feTile'

● 15.24 Filter primitive 'feTurbulence'

● 15.25 Filter Module
● 15.26 Basic Filter Module
● 15.27 DOM interfaces

15.1 Introduction

This chapter describes SVG's declarative filter effects feature set, which when combined with the 2D power of SVG can

http://www.w3.org/TR/SVG/filters.html (1 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Filter Effects - SVG 1.1 - 20030114

describe much of the common artwork on the Web in such a way that client-side generation and alteration can be
performed easily. In addition, the ability to apply filter effects to SVG graphics elements and container elements helps to
maintain the semantic structure of the document, instead of resorting to images which aside from generally being a fixed
resolution tend to obscure the original semantics of the elements they replace. This is especially true for effects applied
to text.

A filter effect consists of a series of graphics operations that are applied to a given source graphic to produce a
modified graphical result. The result of the filter effect is rendered to the target device instead of the original source
graphic. The following illustrates the process:

View this example as SVG (SVG-enabled browsers only)

Filter effects are defined by 'filter' elements. To apply a filter effect to a graphics element or a container element, you set
the value of the 'filter' property on the given element such that it references the filter effect.

Each 'filter' element contains a set of filter primitives as its children. Each filter primitive performs a single fundamental
graphical operation (e.g., a blur or a lighting effect) on one or more inputs, producing a graphical result. Because most of
the filter primitives represent some form of image processing, in most cases the output from a filter primitive is a single
RGBA image.

The original source graphic or the result from a filter primitive can be used as input into one or more other filter primitives.
A common application is to use the source graphic multiple times. For example, a simple filter could replace one graphic
by two by adding a black copy of original source graphic offset to create a drop shadow. In effect, there are now two
layers of graphics, both with the same original source graphics.

When applied to container elements such as 'g', the 'filter' property applies to the contents of the group as a whole. The
group's children do not render to the screen directly; instead, the graphics commands necessary to render the children
are stored temporarily. Typically, the graphics commands are executed as part of the processing of the referenced 'filter'
element via use of the keywords SourceGraphic or SourceAlpha. Filter effects can be applied to container elements with
no content (e.g., an empty 'g' element), in which case the SourceGraphic or SourceAlpha consist of a transparent black
rectangle that is the size of the filter effects region.

Sometimes filter primitives result in undefined pixels. For example, filter primitive 'feOffset' can shift an image down and
to the right, leaving undefined pixels at the top and left. In these cases, the undefined pixels are set to transparent black.

15.2 An example

The following shows an example of a filter effect.

Example filters01 - introducing filter effects.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="7.5cm" height="5cm" viewBox="0 0 200 120"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example filters01.svg - introducing filter effects</title>
 <desc>An example which combines multiple filter primitives
 to produce a 3D lighting effect on a graphic consisting
 of the string "SVG" sitting on top of oval filled in red
 and surrounded by an oval outlined in red.</desc>
 <defs>

http://www.w3.org/TR/SVG/filters.html (2 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/filters00.svg

Filter Effects - SVG 1.1 - 20030114

 <filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0" width="200" height="120">
 <feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
 <feSpecularLighting in="blur" surfaceScale="5" specularConstant=".75"
 specularExponent="20" lighting-color="#bbbbbb"
 result="specOut">
 <fePointLight x="-5000" y="-10000" z="20000"/>
 </feSpecularLighting>
 <feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut"/>
 <feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"
 k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
 <feMerge>
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="litPaint"/>
 </feMerge>
 </filter>
 </defs>
 <rect x="1" y="1" width="198" height="118" fill="#888888" stroke="blue" />
 <g filter="url(#MyFilter)" >
 <g>
 <path fill="none" stroke="#D90000" stroke-width="10"
 d="M50,90 C0,90 0,30 50,30 L150,30 C200,30 200,90 150,90 z" />
 <path fill="#D90000"
 d="M60,80 C30,80 30,40 60,40 L140,40 C170,40 170,80 140,80 z" />
 <g fill="#FFFFFF" stroke="black" font-size="45" font-family="Verdana" >
 <text x="52" y="76">SVG</text>
 </g>
 </g>
 </g>
</svg>

Example filters01

View this example as SVG (SVG-enabled browsers only)

The filter effect used in the example above is repeated here with reference numbers in the left column before each of the
six filter primitives:

1
2
3

4
5

6

<filter id="MyFilter" filterUnits="userSpaceOnUse" x="0" y="0" width="200" height="120">
 <desc>Produces a 3D lighting effect.</desc>
 <feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
 <feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
 <feSpecularLighting in="blur" surfaceScale="5" specularConstant=".75"
 specularExponent="20" lighting-color="#bbbbbb"
 result="specOut">
 <fePointLight x="-5000" y="-10000" z="20000"/>
 </feSpecularLighting>
 <feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut"/>
 <feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"
 k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
 <feMerge>

http://www.w3.org/TR/SVG/filters.html (3 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/filters01.svg

Filter Effects - SVG 1.1 - 20030114

 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="litPaint"/>
 </feMerge>
</filter>

The following pictures show the intermediate image results from each of the six filter elements:

Source graphic

After filter primitive 1

After filter primitive 2

After filter primitive 3

After filter primitive 4

After filter primitive 5

After filter primitive 6

1. Filter primitive 'feGaussianBlur' takes input SourceAlpha, which is the alpha channel of the source graphic. The
result is stored in a temporary buffer named "blur". Note that "blur" is used as input to both filter primitives 2 and 3.

2. Filter primitive 'feOffset' takes buffer "blur", shifts the result in a positive direction in both x and y, and creates a
new buffer named "offsetBlur". The effect is that of a drop shadow.

3. Filter primitive 'feSpecularLighting', uses buffer "blur" as a model of a surface elevation and generates a lighting
effect from a single point source. The result is stored in buffer "specOut".

4. Filter primitive 'feComposite' masks out the result of filter primitive 3 by the original source graphics alpha channel
so that the intermediate result is no bigger than the original source graphic.

5. Filter primitive 'feComposite' composites the result of the specular lighting with the original source graphic.
6. Filter primitive 'feMerge' composites two layers together. The lower layer consists of the drop shadow result from

filter primitive 2. The upper layer consists of the specular lighting result from filter primitive 5.

15.3 The 'filter' element

The description of the 'filter' element follows:

<!ENTITY % SVG.filter.extra.content "" >
<!ENTITY % SVG.filter.element "INCLUDE" >
<![%SVG.filter.element;[
<!ENTITY % SVG.filter.content
 "((%SVG.Description.class;)*, (%SVG.animate.qname; | %SVG.set.qname;

 %SVG.FilterPrimitive.class; %SVG.filter.extra.conten\

t;)*)"
>
<!ELEMENT %SVG.filter.qname; %SVG.filter.content; >

<!-- end of SVG.filter.element -->]]>
<!ENTITY % SVG.filter.attlist "INCLUDE" >
<![%SVG.filter.attlist;[
<!ATTLIST %SVG.filter.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.XLink.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

http://www.w3.org/TR/SVG/filters.html (4 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 filterRes %NumberOptionalNumber.datatype; #IMPLIED

 filterUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
 primitiveUnits (userSpaceOnUse | objectBoundingBox) #IMPLIED
>

Attribute definitions:

filterUnits = "userSpaceOnUse | objectBoundingBox"
See Filter effects region.

primitiveUnits = "userSpaceOnUse | objectBoundingBox"
Specifies the coordinate system for the various length values within the filter primitives and for the attributes that
define the filter primitive subregion.
If primitiveUnits="userSpaceOnUse", any length values within the filter definitions represent values in the
current user coordinate system in place at the time when the 'filter' element is referenced (i.e., the user coordinate
system for the element referencing the 'filter' element via a 'filter' property).
If primitiveUnits="objectBoundingBox", then any length values within the filter definitions represent fractions or
percentages of the bounding box on the referencing element (see Object bounding box units).
If attribute primitiveUnits is not specified, then the effect is as if a value of userSpaceOnUse were specified.
Animatable: yes.

x = "<coordinate>"
See Filter effects region.

y = "<coordinate>"
See Filter effects region.

width = "<length>"
See Filter effects region.

height = "<length>"
See Filter effects region.

filterRes = "<number-optional-number>"
See Filter effects region.

xlink:href = "<uri>"
A URI reference to another 'filter' element within the current SVG document fragment. Any attributes which are
defined on the referenced 'filter' element which are not defined on this element are inherited by this element. If this
element has no defined filter nodes, and the referenced element has defined filter nodes (possibly due to its own
href attribute), then this element inherits the filter nodes defined from the referenced 'filter' element. Inheritance
can be indirect to an arbitrary level; thus, if the referenced 'filter' element inherits attributes or its filter node
specification due to its own href attribute, then the current element can inherit those attributes or filter node
specifications.
Animatable: yes.

Properties inherit into the 'filter' element from its ancestors; properties do not inherit from the element referencing the
'filter' element.

'filter' elements are never rendered directly; their only usage is as something that can be referenced using the 'filter'
property. The 'display' property does not apply to the 'filter' element; thus, 'filter' elements are not directly rendered even
if the 'display' property is set to a value other than none, and 'filter' elements are available for referencing even when the
'display' property on the 'filter' element or any of its ancestors is set to none.

15.4 The 'filter' property

The description of the 'filter' property is as follows:

'filter'
Value: <uri> | none | inherit

http://www.w3.org/TR/SVG/filters.html (5 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Filter Effects - SVG 1.1 - 20030114

Initial: none
Applies to: container elements and graphics elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

<uri>
A URI reference to a 'filter' element which defines the filter effects that shall be applied to this element.

none
Do not apply any filter effects to this element.

15.5 Filter effects region

A 'filter' element can define a region on the canvas to which a given filter effect applies and can provide a resolution for
any intermediate continuous tone images used to process any raster-based filter primitives. The 'filter' element has the
following attributes which work together to define the filter effects region:

● filterUnits={ userSpaceOnUse | objectBoundingBox }.
Defines the coordinate system for attributes x, y, width, height.
If filterUnits="userSpaceOnUse", x, y, width, height represent values in the current user coordinate system in
place at the time when the 'filter' element is referenced (i.e., the user coordinate system for the element
referencing the 'filter' element via a 'filter' property).
If filterUnits="objectBoundingBox", then x, y, width, height represent fractions or percentages of the bounding
box on the referencing element (see Object bounding box units).
If attribute filterUnits is not specified, then the effect is as if a value of objectBoundingBox were specified.
Animatable: yes.

● x, y, width, height, which define a rectangular region on the canvas to which this filter applies.
The amount of memory and processing time required to apply the filter are related to the size of this rectangle and
the filterRes attribute of the filter.
The coordinate system for these attributes depends on the value for attribute filterUnits.
Negative values for width or height are an error (see Error processing). Zero values disable rendering of the
element which referenced the filter.
The bounds of this rectangle act as a hard clipping region for each filter primitive included with a given 'filter'
element; thus, if the effect of a given filter primitive would extend beyond the bounds of the rectangle (this
sometimes happens when using a 'feGaussianBlur' filter primitive with a very large stdDeviation), parts of the effect
will get clipped.
If x or y is not specified, the effect is as if a value of "-10%" were specified.
If width or height is not specified, the effect is as if a value of "120%" were specified.
Animatable: yes.

● filterRes (which has the form x-pixels [y-pixels]) indicates the width and height of the intermediate
images in pixels. If not provided, then a reasonable default resolution appropriate for the target device will be
used. (For displays, an appropriate display resolution, preferably the current display's pixel resolution, is the
default. For printing, an appropriate common printer resolution, such as 400dpi, is the default.)
Care should be taken when assigning a non-default value to this attribute. Too small of a value may result in
unwanted pixelation in the result. Too large of a value may result in slow processing and large memory usage.
Negative values are an error (see Error processing). Zero values disable rendering of the element which
referenced the filter.
Animatable: yes.

Note that both of the two possible value for filterUnits (i.e., objectBoundingBox and userSpaceOnUse) result in a filter
region whose coordinate system has its X-axis and Y-axis each parallel to the X-axis and Y-axis, respectively, of the user
coordinate system for the element to which the filter will be applied.

Sometimes implementers can achieve faster performance when the filter region can be mapped directly to device pixels;
thus, for best performance on display devices, it is suggested that authors define their region such that SVG user agent
can align the filter region pixel-for-pixel with the background. In particular, for best filter effects performance, avoid

http://www.w3.org/TR/SVG/filters.html (6 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

rotating or skewing the user coordinate system. Explicit values for attribute filterRes can either help or harm
performance. If filterRes is smaller than the automatic (i.e., default) filter resolution, then filter effect might have faster
performance (usually at the expense of quality). If filterRes is larger than the automatic (i.e., default) filter resolution, then
filter effects performance will usually be slower.

It is often necessary to provide padding space because the filter effect might impact bits slightly outside the tight-fitting
bounding box on a given object. For these purposes, it is possible to provide negative percentage values for x, y and
percentages values greater than 100% for width, height. This, for example, is why the defaults for the filter effects
region are x="-10%" y="-10%" width="120%" height="120%".

15.6 Accessing the background image

Two possible pseudo input images for filter effects are BackgroundImage and BackgroundAlpha, which each represent
an image snapshot of the canvas under the filter region at the time that the 'filter' element is invoked. BackgroundImage
represents both the color values and alpha channel of the canvas (i.e., RGBA pixel values), whereas BackgroundAlpha
represents only the alpha channel.

Implementations of SVG user agents often will need to maintain supplemental background image buffers in order to
support the BackgroundImage and BackgroundAlpha pseudo input images. Sometimes, the background image buffers
will contain an in-memory copy of the accumulated painting operations on the current canvas.

Because in-memory image buffers can take up significant system resources, SVG content must explicitly indicate to the
SVG user agent that the document needs access to the background image before BackgroundImage and
BackgroundAlpha pseudo input images can be used. The property which enables access to the background image is
'enable-background':

'enable-background'
Value: accumulate | new [<x> <y> <width> <height>] | inherit
Initial: accumulate
Applies to: container elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: no

'enable-background' is only applicable to container elements and specifies how the SVG user agents manages the
accumulation of the background image.

A value of new indicates two things:

● It enables the ability of children of the current container element to access the background image.
● It indicates that a new (i.e., initially transparent black) background image canvas is established and that (in effect)

all children of the current container element shall be rendered into the new background image canvas in addition
to being rendered onto the target device.

A meaning of enable-background: accumulate (the initial/default value) depends on context:

● If an ancestor container element has a property value of 'enable-background:new', then all graphics elements
within the current container element are rendered both onto the parent container element's background image
canvas and onto the target device.

● Otherwise, there is no current background image canvas, so it is only necessary to render graphics elements onto
the target device. (No need to render to the background image canvas.)

If a filter effect specifies either the BackgroundImage or the BackgroundAlpha pseudo input images and no ancestor
container element has a property value of 'enable-background:new', then the background image request is technically in
error. Processing will proceed without interruption (i.e., no error message) and a transparent black image shall be
provided in response to the request.

http://www.w3.org/TR/SVG/filters.html (7 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Filter Effects - SVG 1.1 - 20030114

The optional <x>,<y>,<width>,<height> parameters on the new value indicate the subregion of the container element's
user space where access to the background image is allowed to happen. These parameters enable the SVG user agent
potentially to allocate smaller temporary image buffers than the default values, which might require the SVG user agent
to allocate buffers as large as the current viewport. Thus, the values <x>,<y>,<width>,<height> act as a clipping
rectangle on the background image canvas. Negative values for <width> or <height> are an error (see Error processing).
If more than zero but less than four of the values <x>,<y>,<width> and <height> are specified or if zero values are
specified for <width> or <height>, BackgroundImage and BackgroundAlpha are processed as if background image
processing were not enabled.

Assume you have an element E in the document and that E has a series of ancestors A1 (its immediate parent), A2, etc.

(Note: A0 is E.) Each ancestor Ai will have a corresponding temporary background image offscreen buffer BUFi. The

contents of the background image available to a 'filter' referenced by E is defined as follows:

● Find the element Ai with the smallest subscript i (including A0=E) for which the 'enable-background' property has

the value new. (Note: if there is no such ancestor element, then there is no background image available to E, in
which case a transparent black image will be used as E's background image.)

● For each Ai (from i=n to 1), initialize BUFi to transparent black. Render all children of Ai up to but not including Ai-1

into BUFi. The children are painted, then filtered, clipped, masked and composited using the various painting,

filtering, clipping, masking and object opacity settings on the given child. Any filter effects, masking and group
opacity that might be set on Ai do not apply when rendering the children of Ai into BUFi.

(Note that for the case of A0=E, the graphical contents of E are not rendered into BUF1 and thus are not part of the

background image available to E. Instead, the graphical contents of E are available via the SourceGraphic and
SourceAlpha pseudo input images.)

● Then, for each Ai (from i=1 to n-1), composite BUFi into BUFi+1.

● The accumulated result (i.e., BUFn) represents the background image available to E.

Example enable-background-01 illustrates the rules for background image processing.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="13.5cm" height="2.7cm" viewBox="0 0 1350 270"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <title>Example enable-background01</title>
 <desc>This test case shows five pictures which illustrate the rules
 for background image processing.</desc>
 <defs>
 <filter id="ShiftBGAndBlur"
 filterUnits="userSpaceOnUse" x="0" y="0" width="1200" height="400">
 <desc>
 This filter discards the SourceGraphic, if any, and just produces
 a result consisting of the BackgroundImage shifted down 125 units
 and then blurred.
 </desc>
 <feOffset in="BackgroundImage" dx="0" dy="125" />
 <feGaussianBlur stdDeviation="8" />
 </filter>
 <filter id="ShiftBGAndBlur_WithSourceGraphic"
 filterUnits="userSpaceOnUse" x="0" y="0" width="1200" height="400">
 <desc>
 This filter takes the BackgroundImage, shifts it down 125 units, blurs it,
 and then renders the SourceGraphic on top of the shifted/blurred background.
 </desc>
 <feOffset in="BackgroundImage" dx="0" dy="125" />
 <feGaussianBlur stdDeviation="8" result="blur" />
 <feMerge>
 <feMergeNode in="blur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
 </filter>
 </defs>
 <g transform="translate(0,0)">
 <desc>The first picture is our reference graphic without filters.</desc>
 <rect x="25" y="25" width="100" height="100" fill="red"/>
 <g opacity=".5">
 <circle cx="125" cy="75" r="45" fill="green"/>
 <polygon points="160,25 160,125 240,75" fill="blue"/>
 </g>
 <rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>
 </g>
 <g enable-background="new" transform="translate(270,0)">
 <desc>The second adds an empty 'g' element which invokes ShiftBGAndBlur.</desc>
 <rect x="25" y="25" width="100" height="100" fill="red"/>

http://www.w3.org/TR/SVG/filters.html (8 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

 <g opacity=".5">
 <circle cx="125" cy="75" r="45" fill="green"/>
 <polygon points="160,25 160,125 240,75" fill="blue"/>
 </g>
 <g filter="url(#ShiftBGAndBlur)"/>
 <rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>
 </g>
 <g enable-background="new" transform="translate(540,0)">
 <desc>The third invokes ShiftBGAndBlur on the inner group.</desc>
 <rect x="25" y="25" width="100" height="100" fill="red"/>
 <g filter="url(#ShiftBGAndBlur)" opacity=".5">
 <circle cx="125" cy="75" r="45" fill="green"/>
 <polygon points="160,25 160,125 240,75" fill="blue"/>
 </g>
 <rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>
 </g>
 <g enable-background="new" transform="translate(810,0)">
 <desc>The fourth invokes ShiftBGAndBlur on the triangle.</desc>
 <rect x="25" y="25" width="100" height="100" fill="red"/>
 <g opacity=".5">
 <circle cx="125" cy="75" r="45" fill="green"/>
 <polygon points="160,25 160,125 240,75" fill="blue"
 filter="url(#ShiftBGAndBlur)"/>
 </g>
 <rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>
 </g>
 <g enable-background="new" transform="translate(1080,0)">
 <desc>The fifth invokes ShiftBGAndBlur_WithSourceGraphic on the triangle.</desc>
 <rect x="25" y="25" width="100" height="100" fill="red"/>
 <g opacity=".5">
 <circle cx="125" cy="75" r="45" fill="green"/>
 <polygon points="160,25 160,125 240,75" fill="blue"
 filter="url(#ShiftBGAndBlur_WithSourceGraphic)"/>
 </g>
 <rect x="5" y="5" width="260" height="260" fill="none" stroke="blue"/>
 </g>
</svg>

Example enable-background-01

View this example as SVG (SVG-enabled browsers only)

The example above contains five parts, described as follows:

1. The first set is the reference graphic. The reference graphic consists of a red rectangle followed by a 50%
transparent 'g' element. Inside the 'g' is a green circle that partially overlaps the rectangle and a a blue triangle
that partially overlaps the circle. The three objects are then outlined by a rectangle stroked with a thin blue line. No
filters are applied to the reference graphic.

2. The second set enables background image processing and adds an empty 'g' element which invokes the
ShiftBGAndBlur filter. This filter takes the current accumulated background image (i.e., the entire reference
graphic) as input, shifts its offscreen down, blurs it, and then writes the result to the canvas. Note that the
offscreen for the filter is initialized to transparent black, which allows the already rendered rectangle, circle and
triangle to show through after the filter renders its own result to the canvas.

3. The third set enables background image processing and instead invokes the ShiftBGAndBlur filter on the inner 'g'
element. The accumulated background at the time the filter is applied contains only the red rectangle. Because the
children of the inner 'g' (i.e., the circle and triangle) are not part of the inner 'g' element's background and because
ShiftBGAndBlur ignores SourceGraphic, the children of the inner 'g' do not appear in the result.

4. The fourth set enables background image processing and invokes the ShiftBGAndBlur on the 'polygon' element
that draws the triangle. The accumulated background at the time the filter is applied contains the red rectangle
plus the green circle ignoring the effect of the 'opacity' property on the inner 'g' element. (Note that the blurred
green circle at the bottom does not let the red rectangle show through on its left side. This is due to ignoring the
effect of the 'opacity' property.) Because the triangle itself is not part of the accumulated background and because
ShiftBGAndBlur ignores SourceGraphic, the triangle does not appear in the result.

5. The fifth set is the same as the fourth except that filter ShiftBGAndBlur_WithSourceGraphic is invoked instead of
ShiftBGAndBlur. ShiftBGAndBlur_WithSourceGraphic performs the same effect as ShiftBGAndBlur, but then

http://www.w3.org/TR/SVG/filters.html (9 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/enable-background-01.svg

Filter Effects - SVG 1.1 - 20030114

renders the SourceGraphic on top of the shifted, blurred background image. In this case, SourceGraphic is the
blue triangle; thus, the result is the same as in the fourth case except that the blue triangle now appears.

15.7 Filter primitives overview

15.7.1 Overview

This section describes the various filter primtives that can be assembled to achieve a particular filter effect.

Unless otherwise stated, all image filters operate on premultiplied RGBA samples. Filters which work more naturally on
non-premultiplied data (feColorMatrix and feComponentTransfer) will temporarily undo and redo premultiplication as
specified. All raster effect filtering operations take 1 to N input RGBA images, additional attributes as parameters, and
produce a single output RGBA image.

The RGBA result from each filter primitive will be clamped into the allowable ranges for colors and opacity values. Thus,
for example, the result from a given filter primitive will have any negative color values or opacity values adjusted up to
color/opacity of zero.

The color space in which a particular filter primitive performs its operations is determined by the value of property 'color-
interpolation-filters' on the given filter primitive. A different property, 'color-interpolation' determines the color space for
other color operations. Because these two properties have different initial values ('color-interpolation-filters' has an initial
value of linearRGB whereas 'color-interpolation' has an initial value of sRGB), in some cases to achieve certain results (e.
g., when coordinating gradient interpolation with a filtering operation) it will be necessary to explicitly set 'color-
interpolation' to linearRGB or 'color-interpolation-filters' to sRGB on particular elements. Note that the examples below do
not explicitly set either 'color-interpolation' or 'color-interpolation-filters', so the initial values for these properties apply to
the examples.

15.7.2 Common attributes

The following attributes are available for most of the filter primitives:

<!ENTITY % SVG.FilterPrimitive.extra.attrib "" >
<!ENTITY % SVG.FilterPrimitive.attrib

 "x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

 width %Length.datatype; #IMPLIED

 height %Length.datatype; #IMPLIED

 result CDATA #IMPLIED
 %SVG.FilterPrimitive.extra.attrib;"
>
<!-- SVG.FilterPrimitiveWithIn.attrib\

 -->
<!ENTITY % SVG.FilterPrimitiveWithIn.extra.attrib "" >
<!ENTITY % SVG.FilterPrimitiveWithIn.attrib

 "%SVG.FilterPrimitive.attrib;

 in CDATA #IMPLIED
 %SVG.FilterPrimitiveWithIn.extra.attrib;"
>

Attribute definitions:

x = "<coordinate>"
The minimum x coordinate for the subregion which restricts calculation and rendering of the given filter primitive.
See filter primitive subregion.
Animatable: yes.

y = "<coordinate>"
The minimum y coordinate for the subregion which restricts calculation and rendering of the given filter primitive.
See filter primitive subregion. Animatable: yes.

http://www.w3.org/TR/SVG/filters.html (10 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

width = "<length>"
The width of the subregion which restricts calculation and rendering of the given filter primitive. See filter primitive
subregion.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.
e., the result is a transparent black image).
Animatable: yes.

height = "<length>"
The height of the subregion which restricts calculation and rendering of the given filter primitive. See filter primitive
subregion.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.
e., the result is a transparent black image).
Animatable: yes.

result = "<filter-primitive-reference>"
Assigned name for this filter primitive. If supplied, then graphics that result from processing this filter primitive can
be referenced by an in attribute on a subsequent filter primitive within the same 'filter' element. If no value is
provided, the output will only be available for re-use as the implicit input into the next filter primitive if that filter
primitive provides no value for its in attribute.
Note that a <filter-primitive-reference> is not an XML ID; instead, a <filter-primitive-reference> is only meaningful
within a given 'filter' element and thus have only local scope. It is legal for the same <filter-primitive-reference> to
appear multiple times within the same 'filter' element. When referenced, the <filter-primitive-reference> will use the
closest preceding filter primitive with the given result.
Animatable: yes.

in = "SourceGraphic | SourceAlpha | BackgroundImage | BackgroundAlpha | FillPaint | StrokePaint | <filter-
primitive-reference>"

Identifies input for the given filter primitive. The value can be either one of six keywords or can be a string which
matches a previous result attribute value within the same 'filter' element. If no value is provided and this is the first
filter primitive, then this filter primitive will use SourceGraphic as its input. If no value is provided and this is a
subsequent filter primitive, then this filter primitive will use the result from the previous filter primitive as its input.

If the value for result appears multiple times within a given 'filter' element, then a reference to that result will use
the closest preceding filter primitive with the given value for attribute result. Forward references to results are an
error.

Definitions for the six keywords:
SourceGraphic

This keyword represents the graphics elements that were the original input into the 'filter' element. For
raster effects filter primitives, the graphics elements will be rasterized into an initially clear RGBA raster in
image space. Pixels left untouched by the original graphic will be left clear. The image is specified to be
rendered in linear RGBA pixels. The alpha channel of this image captures any anti-aliasing specified by
SVG. (Since the raster is linear, the alpha channel of this image will represent the exact percent coverage of
each pixel.)

SourceAlpha
This keyword represents the graphics elements that were the original input into the 'filter' element.
SourceAlpha has all of the same rules as SourceGraphic except that only the alpha channel is used. The
input image is an RGBA image consisting of implicitly black color values for the RGB channels, but whose
alpha channel is the same as SourceGraphic. If this option is used, then some implementations might need
to rasterize the graphics elements in order to extract the alpha channel.

BackgroundImage
This keyword represents an image snapshot of the canvas under the filter region at the time that the 'filter'
element was invoked. See Accessing the background image.

BackgroundAlpha
Same as BackgroundImage except only the alpha channel is used. See SourceAlpha and Accessing the
background image.

FillPaint
This keyword represents the value of the 'fill' property on the target element for the filter effect. The FillPaint
image has conceptually infinite extent. Frequently this image is opaque everywhere, but it might not be if the
"paint" itself has alpha, as in the case of a gradient or pattern which itself includes transparent or semi-
transparent parts.

StrokePaint

http://www.w3.org/TR/SVG/filters.html (11 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

This keyword represents the value of the 'stroke' property on the target element for the filter effect. The
StrokePaint image has conceptually infinite extent. Frequently this image is opaque everywhere, but it might
not be if the "paint" itself has alpha, as in the case of a gradient or pattern which itself includes transparent
or semi-transparent parts.

Animatable: yes.

15.7.3 Filter primitive subregion

All filter primitives have attributes x, y, width and height which identify a subregion which restricts calculation and
rendering of the given filter primitive. These attributes are defined according to the same rules as other filter primitives'
coordinate and length attributes and thus represent values in the coordinate system established by attribute
primitiveUnits on the 'filter' element.

x, y, width and height default to the union (i.e., tightest fitting bounding box) of the subregions defined for all referenced
nodes. If there are no referenced nodes (e.g., for 'feImage' or 'feTurbulence'), or one or more of the referenced nodes is a
standard input (one of SourceGraphic, SourceAlpha, BackgroundImage, BackgroundAlpha, FillPaint or StrokePaint), or for
'feTile' (which is special because its principal function is to replicate the referenced node in X and Y and thereby produce
a usually larger result), the default subregion is 0%,0%,100%,100%, where percentages are relative to the dimensions of
the filter region.

x, y, width and height act as a hard clip clipping rectangle.

All intermediate offscreens are defined to not exceed the intersection of x, y, width and height with the filter region. The
filter region and any of the x, y, width and height subregions are to be set up such that all offscreens are made big
enough to accommodate any pixels which even partly intersect with either the filter region or the x,y,width,height
subregions.

'feTile' references a previous filter primitive and then stitches the tiles together based on the x, y, width and height
values of the referenced filter primitive in order to fill its own filter primitive subregion.

15.8 Light source elements and properties

15.8.1 Introduction

The following sections define the elements that define a light source, 'feDistantLight', 'fePointLight' and 'feSpotLight', and
property 'lighting-color', which defines the color of the light.

15.8.2 Light source 'feDistantLight'

<!ENTITY % SVG.feDistantLight.extra.content "" >
<!ENTITY % SVG.feDistantLight.element "INCLUDE" >
<![%SVG.feDistantLight.element;[
<!ENTITY % SVG.feDistantLight.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feDistantLight.extra.content;)*"
>
<!ELEMENT %SVG.feDistantLight.qname; %SVG.feDistan\

tLight.content; >
<!-- end of SVG.feDistantLight.element -->]]>
<!ENTITY % SVG.feDistantLight.attlist "INCLUDE" >
<![%SVG.feDistantLight.attlist;[
<!ATTLIST %SVG.feDistantLight.qname;

 %SVG.Core.attrib;

 azimuth %Number.datatype; #IMPLIED

 elevation %Number.datatype; #IMPLIED

>

http://www.w3.org/TR/SVG/filters.html (12 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Attribute definitions:

azimuth = "<number>"
Direction angle for the light source on the XY plane, in degrees.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

elevation = "<number>"
Direction angle for the light source on the YZ plane, in degrees.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

15.8.3 Light source 'fePointLight'

<!ENTITY % SVG.fePointLight.extra.content "" >
<!ENTITY % SVG.fePointLight.element "INCLUDE" >
<![%SVG.fePointLight.element;[
<!ENTITY % SVG.fePointLight.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.fePointLight.extra.content;)*"
>
<!ELEMENT %SVG.fePointLight.qname; %SVG.fePointLight\

.content; >
<!-- end of SVG.fePointLight.element -->]]>
<!ENTITY % SVG.fePointLight.attlist "INCLUDE" >
<![%SVG.fePointLight.attlist;[
<!ATTLIST %SVG.fePointLight.qname;

 %SVG.Core.attrib;

 x %Number.datatype; #IMPLIED

 y %Number.datatype; #IMPLIED

 z %Number.datatype; #IMPLIED

>

Attribute definitions:

x = "<number>"
X location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

y = "<number>"
Y location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

z = "<number>"
Z location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element,
assuming that, in the initial coordinate system, the positive Z-axis comes out towards the person viewing the
content and assuming that one unit along the Z-axis equals one unit in X or Y.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

15.8.4 Light source 'feSpotLight'

http://www.w3.org/TR/SVG/filters.html (13 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

<!ENTITY % SVG.feSpotLight.extra.content "" >
<!ENTITY % SVG.feSpotLight.element "INCLUDE" >
<![%SVG.feSpotLight.element;[
<!ENTITY % SVG.feSpotLight.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feSpotLight.extra.content;)*"

>
<!ELEMENT %SVG.feSpotLight.qname; %SVG.feSpotLight.co\

ntent; >
<!-- end of SVG.feSpotLight.element -->]]>
<!ENTITY % SVG.feSpotLight.attlist "INCLUDE" >
<![%SVG.feSpotLight.attlist;[
<!ATTLIST %SVG.feSpotLight.qname;

 %SVG.Core.attrib;

 x %Number.datatype; #IMPLIED

 y %Number.datatype; #IMPLIED

 z %Number.datatype; #IMPLIED

 pointsAtX %Number.datatype; #IMPLIED

 pointsAtY %Number.datatype; #IMPLIED

 pointsAtZ %Number.datatype; #IMPLIED

 specularExponent %Number.datatype; #IMPLIED

 limitingConeAngle %Number.datatype; #IMPLIED

>

Attribute definitions:

x = "<number>"
X location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

y = "<number>"
Y location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

z = "<number>"
Z location for the light source in the coordinate system established by attribute primitiveUnits on the 'filter' element,
assuming that, in the initial coordinate system, the positive Z-axis comes out towards the person viewing the
content and assuming that one unit along the Z-axis equals one unit in X or Y.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtX = "<number>"
X location in the coordinate system established by attribute primitiveUnits on the 'filter' element of the point at
which the light source is pointing.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtY = "<number>"
Y location in the coordinate system established by attribute primitiveUnits on the 'filter' element of the point at
which the light source is pointing.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

pointsAtZ = "<number>"
Z location of the point at which the light source is pointing, assuming that, in the initial coordinate system, the
positive Z-axis comes out towards the person viewing the content and assuming that one unit along the Z-axis
equals one unit in X or Y.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

specularExponent = "<number>"
Exponent value controlling the focus for the light source.
If the attribute is not specified, then the effect is as if a value of 1 were specified.

http://www.w3.org/TR/SVG/filters.html (14 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Animatable: yes.
limitingConeAngle = "<number>"

A limiting cone which restricts the region where the light is projected. No light is projected outside the cone.
limitingConeAngle represents the angle between the spot light axis (i.e. the axis between the light source and the
point to which it is pointing at) and the spot light cone. User agents should apply a smoothing technique such as
anti-aliasing at the boundary of the cone.
If no value is specified, then no limiting cone will be applied.
Animatable: yes.

15.8.5 The 'lighting-color' property

The 'lighting-color' property defines the color of the light source for filter primitives 'feDiffuseLighting' and
'feSpecularLighting'.

'lighting-color'
Value: currentColor |

<color> [icc-color(<name>[,<icccolorvalue>]*)] |
inherit

Initial: white
Applies to: 'feDiffuseLighting' and 'feSpecularLighting' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

15.9 Filter primitive 'feBlend'

This filter composites two objects together using commonly used imaging software blending modes. It performs a pixel-
wise combination of two input images.

<!ENTITY % SVG.feBlend.extra.content "" >
<!ENTITY % SVG.feBlend.element "INCLUDE" >
<![%SVG.feBlend.element;[
<!ENTITY % SVG.feBlend.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feBlend.extra.content;)*"

>
<!ELEMENT %SVG.feBlend.qname; %SVG.feBlend.content; >

<!-- end of SVG.feBlend.element -->]]>
<!ENTITY % SVG.feBlend.attlist "INCLUDE" >
<![%SVG.feBlend.attlist;[
<!ATTLIST %SVG.feBlend.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 in2 CDATA #REQUIRED
 mode (normal | multiply | screen | darken | lighten) 'normal'
>

Attribute definitions:

mode = "normal | multiply | screen | darken | lighten"
One of the image blending modes (see table below). Default is: normal.
Animatable: yes.

in2 = "(see in attribute)"
The second input image to the blending operation. This attribute can take on the same values as the in attribute.
Animatable: yes.

http://www.w3.org/TR/SVG/filters.html (15 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Filter Effects - SVG 1.1 - 20030114

For all feBlend modes, the result opacity is computed as follows:

qr = 1 - (1-qa)*(1-qb)

For the compositing formulas below, the following definitions apply:

cr = Result color (RGB) - premultiplied
qa = Opacity value at a given pixel for image A
qb = Opacity value at a given pixel for image B
ca = Color (RGB) at a given pixel for image A - premultiplied
cb = Color (RGB) at a given pixel for image B - premultiplied

The following table provides the list of available image blending modes:

Image Blending Mode Formula for computing result color

normal cr = (1 - qa) * cb + ca

multiply cr = (1-qa)*cb + (1-qb)*ca + ca*cb

screen cr = cb + ca - ca * cb

darken cr = Min ((1 - qa) * cb + ca, (1 - qb) * ca + cb)

lighten cr = Max ((1 - qa) * cb + ca, (1 - qb) * ca + cb)

'normal' blend mode is equivalent to operator="over" on the 'feComposite' filter primitive, matches the blending method
used by 'feMerge' and matches the simple alpha compositing technique used in SVG for all compositing outside of filter
effects.

Example feBlend shows examples of the five blend modes.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="5cm" viewBox="0 0 500 500" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <title>Example feBlend - Examples of feBlend modes</title>
 <desc>Five text strings blended into a gradient,
 with one text string for each of the five feBlend modes.</desc>
 <defs>
 <linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
 x1="100" y1="0" x2="300" y2="0">
 <stop offset="0" stop-color="#000000" />
 <stop offset=".33" stop-color="#ffffff" />
 <stop offset=".67" stop-color="#ff0000" />
 <stop offset="1" stop-color="#808080" />
 </linearGradient>
 <filter id="Normal">
 <feBlend mode="normal" in2="BackgroundImage" in="SourceGraphic"/>
 </filter>
 <filter id="Multiply">
 <feBlend mode="multiply" in2="BackgroundImage" in="SourceGraphic"/>
 </filter>
 <filter id="Screen">
 <feBlend mode="screen" in2="BackgroundImage" in="SourceGraphic"/>
 </filter>
 <filter id="Darken">
 <feBlend mode="darken" in2="BackgroundImage" in="SourceGraphic"/>
 </filter>
 <filter id="Lighten">
 <feBlend mode="lighten" in2="BackgroundImage" in="SourceGraphic"/>
 </filter>
 </defs>
 <rect fill="none" stroke="blue"
 x="1" y="1" width="498" height="498"/>
 <g enable-background="new" >
 <rect x="100" y="20" width="300" height="460" fill="url(#MyGradient)" />
 <g font-family="Verdana" font-size="75" fill="#888888" fill-opacity=".6" >
 <text x="50" y="90" filter="url(#Normal)" >Normal</text>
 <text x="50" y="180" filter="url(#Multiply)" >Multiply</text>
 <text x="50" y="270" filter="url(#Screen)" >Screen</text>
 <text x="50" y="360" filter="url(#Darken)" >Darken</text>
 <text x="50" y="450" filter="url(#Lighten)" >Lighten</text>
 </g>
 </g>
</svg>

http://www.w3.org/TR/SVG/filters.html (16 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Example
feBlend

View this example as SVG (SVG-enabled browsers only)

15.10 Filter primitive 'feColorMatrix'

This filter applies a matrix transformation:

R'		a00 a01 a02 a03 a04		R
G'		a10 a11 a12 a13 a14		G
B'	=	a20 a21 a22 a23 a24	*	B
A'		a30 a31 a32 a33 a34		A
1		0 0 0 0 1		1

on the RGBA color and alpha values of every pixel on the input graphics to produce a result with a new set of RGBA
color and alpha values.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color
values, those values are automatically converted into non-premultiplied color values for this operation.

These matrices often perform an identity mapping in the alpha channel. If that is the case, an implementation can avoid
the costly undoing and redoing of the premultiplication for all pixels with A = 1.

<!ENTITY % SVG.feColorMatrix.extra.content "" >
<!ENTITY % SVG.feColorMatrix.element "INCLUDE" >
<![%SVG.feColorMatrix.element;[
<!ENTITY % SVG.feColorMatrix.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feColorMatrix.extra.content;)*"
>
<!ELEMENT %SVG.feColorMatrix.qname; %SVG.feColorMat\

rix.content; >
<!-- end of SVG.feColorMatrix.element -->]]>
<!ENTITY % SVG.feColorMatrix.attlist "INCLUDE" >
<![%SVG.feColorMatrix.attlist;[
<!ATTLIST %SVG.feColorMatrix.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 type (matrix | saturate | hueRotate | luminanceToAlpha) 'matrix'
 values CDATA #IMPLIED
>

Attribute definitions:

http://www.w3.org/TR/SVG/filters.html (17 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feBlend.svg

Filter Effects - SVG 1.1 - 20030114

type = "matrix | saturate | hueRotate | luminanceToAlpha"
Indicates the type of matrix operation. The keyword matrix indicates that a full 5x4 matrix of values will be
provided. The other keywords represent convenience shortcuts to allow commonly used color operations to be
performed without specifying a complete matrix.
Animatable: yes.

values = "list of <number>s"
The contents of values depends on the value of attribute type:

❍ For type="matrix", values is a list of 20 matrix values (a00 a01 a02 a03 a04 a10 a11 ... a34), separated by
whitespace and/or a comma. For example, the identity matrix could be expressed as:

type="matrix"
values="1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0"

❍ For type="saturate", values is a single real number value (0 to 1). A saturate operation is equivalent to the
following matrix operation:

R'		0.213+0.787s 0.715-0.715s 0.072-0.072s 0 0		R
G'		0.213-0.213s 0.715+0.285s 0.072-0.072s 0 0		G
B'	=	0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0	*	B
A'		0 0 0 1 0		A
1		0 0 0 0 1		1

❍ For type="hueRotate", values is a single one real number value (degrees). A hueRotate operation is
equivalent to the following matrix operation:

R'		a00 a01 a02 0 0		R
G'		a10 a11 a12 0 0		G
B'	=	a20 a21 a22 0 0	*	B
A'		0 0 0 1 0		A
1		0 0 0 0 1		1

where the terms a00, a01, etc. are calculated as follows:

| a00 a01 a02 | [+0.213 +0.715 +0.072]
| a10 a11 a12 | = [+0.213 +0.715 +0.072] +
| a20 a21 a22 | [+0.213 +0.715 +0.072]
 [+0.787 -0.715 -0.072]
cos(hueRotate value) * [-0.213 +0.285 -0.072] +
 [-0.213 -0.715 +0.928]
 [-0.213 -0.715+0.928]
sin(hueRotate value) * [+0.143 +0.140-0.283]
 [-0.787 +0.715+0.072]

Thus, the upper left term of the hue matrix turns out to be:

.213 + cos(hueRotate value)*.787 - sin(hueRotate value)*.213

❍ For type="luminanceToAlpha", values is not applicable. A luminanceToAlpha operation is equivalent to the
following matrix operation:

R'		0 0 0 0 0		R
G'		0 0 0 0 0		G
B'	=	0 0 0 0 0	*	B
A'		0.2125 0.7154 0.0721 0 0		A
1		0 0 0 0 1		1

If the attribute is not specified, then the default behavior depends on the value of attribute type. If type="matrix",
then this attribute defaults to the identity matrix. If type="saturate", then this attribute defaults to the value 1, which
results in the identify matrix. If type="hueRotate", then this attribute defaults to the value 0, which results in the
identify matrix.
Animatable: yes.

http://www.w3.org/TR/SVG/filters.html (18 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Example feColorMatrix shows examples of the four types of feColorMatrix operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="5cm" viewBox="0 0 800 500" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <title>Example feColorMatrix - Examples of feColorMatrix operations</title>
 <desc>Five text strings showing the effects of feColorMatrix:
 an unfiltered text string acting as a reference,
 use of the feColorMatrix matrix option,
 use of the feColorMatrix saturate option,
 use of the feColorMatrix hueRotate option,
 and use of the feColorMatrix luminanceToAlpha option.</desc>
 <defs>
 <linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
 x1="100" y1="0" x2="500" y2="0">
 <stop offset="0" stop-color="#ff00ff" />
 <stop offset=".33" stop-color="#88ff88" />
 <stop offset=".67" stop-color="#2020ff" />
 <stop offset="1" stop-color="#d00000" />
 </linearGradient>
 <filter id="Matrix" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feColorMatrix type="matrix" in="SourceGraphic"
 values=".33 .33 .33 0 0
 .33 .33 .33 0 0
 .33 .33 .33 0 0
 .33 .33 .33 0 0"/>
 </filter>
 <filter id="Saturate40" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feColorMatrix type="saturate" in="SourceGraphic" values="0.4"/>
 </filter>
 <filter id="HueRotate90" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feColorMatrix type="hueRotate" in="SourceGraphic" values="90"/>
 </filter>
 <filter id="LuminanceToAlpha" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feColorMatrix type="luminanceToAlpha" in="SourceGraphic" result="a"/>
 <feComposite in="SourceGraphic" in2="a" operator="in" />
 </filter>
 </defs>
 <rect fill="none" stroke="blue"
 x="1" y="1" width="798" height="498"/>
 <g font-family="Verdana" font-size="75"
 font-weight="bold" fill="url(#MyGradient)" >
 <rect x="100" y="0" width="500" height="20" />
 <text x="100" y="90">Unfiltered</text>
 <text x="100" y="190" filter="url(#Matrix)" >Matrix</text>
 <text x="100" y="290" filter="url(#Saturate40)" >Saturate</text>
 <text x="100" y="390" filter="url(#HueRotate90)" >HueRotate</text>
 <text x="100" y="490" filter="url(#LuminanceToAlpha)" >Luminance</text>
 </g>
</svg>

Example feColorMatrix

View this example as SVG (SVG-enabled browsers only)

15.11 Filter primitive 'feComponentTransfer'

This filter primitive performs component-wise remapping of data as follows:

R' = feFuncR(R)

http://www.w3.org/TR/SVG/filters.html (19 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feColorMatrix.svg

Filter Effects - SVG 1.1 - 20030114

G' = feFuncG(G)

B' = feFuncB(B)

A' = feFuncA(A)

for every pixel. It allows operations like brightness adjustment, contrast adjustment, color balance or thresholding.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color
values, those values are automatically converted into non-premultiplied color values for this operation. (Note that the
undoing and redoing of the premultiplication can be avoided if feFuncA is the identity transform and all alpha values on
the source graphic are set to 1.)

lt;!ENTITY % SVG.feComponentTransfer.extra.content "" >
<!ENTITY % SVG.feComponentTransfer.element "INCLUDE" >
<![%SVG.feComponentTransfer.element;[
<!ENTITY % SVG.feComponentTransfer.content
 "(%SVG.feFuncR.qname;?, %SVG.feFuncG.qname;?, %SVG.feFuncB.qname;?,

 %SVG.feFuncA.qname;? %SVG.feComponentTransfer.e\

xtra.content;)"
>
<!ELEMENT %SVG.feComponentTransfer.qname; %SV\

G.feComponentTransfer.content; >
<!-- end of SVG.feComponentTransfer.element -->]]>
<!ENTITY % SVG.feComponentTransfer.attlist "INCLUDE" >
<![%SVG.feComponentTransfer.attlist;[
<!ATTLIST %SVG.feComponentTransfer.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

>

<!-- feFuncR: Filter Effect Function Red Element -->
<!ENTITY % SVG.feFuncR.extra.content "" >
<!ENTITY % SVG.feFuncR.element "INCLUDE" >
<![%SVG.feFuncR.element;[
<!ENTITY % SVG.feFuncR.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncR.extra.content;)*"

>
<!ELEMENT %SVG.feFuncR.qname; %SVG.feFuncR.content; >

<!-- end of SVG.feFuncR.element -->]]>
<!ENTITY % SVG.feFuncR.attlist "INCLUDE" >
<![%SVG.feFuncR.attlist;[
<!ATTLIST %SVG.feFuncR.qname;

 %SVG.Core.attrib;

 type (identity | table | discrete | linear | gamma) #REQUIRED
 tableValues CDATA #IMPLIED
 slope %Number.datatype; #IMPLIED

 intercept %Number.datatype; #IMPLIED

 amplitude %Number.datatype; #IMPLIED

 exponent %Number.datatype; #IMPLIED

 offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncR.attlist -->]]>
<!-- feFuncG: Filter Effect Function Green Element -->
<!ENTITY % SVG.feFuncG.extra.content "" >
<!ENTITY % SVG.feFuncG.element "INCLUDE" >
<![%SVG.feFuncG.element;[
<!ENTITY % SVG.feFuncG.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncG.extra.content;)*"

>
<!ELEMENT %SVG.feFuncG.qname; %SVG.feFuncG.content; >

<!-- end of SVG.feFuncG.element -->]]>
<!ENTITY % SVG.feFuncG.attlist "INCLUDE" >
<![%SVG.feFuncG.attlist;[

http://www.w3.org/TR/SVG/filters.html (20 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

<!ATTLIST %SVG.feFuncG.qname;

 %SVG.Core.attrib;

 type (identity | table | discrete | linear | gamma) #REQUIRED
 tableValues CDATA #IMPLIED
 slope %Number.datatype; #IMPLIED

 intercept %Number.datatype; #IMPLIED

 amplitude %Number.datatype; #IMPLIED

 exponent %Number.datatype; #IMPLIED

 offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncG.attlist -->]]>
<!-- feFuncB: Filter Effect Function Blue Element -->
<!ENTITY % SVG.feFuncB.extra.content "" >
<!ENTITY % SVG.feFuncB.element "INCLUDE" >
<![%SVG.feFuncB.element;[
<!ENTITY % SVG.feFuncB.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncB.extra.content;)*"

>
<!ELEMENT %SVG.feFuncB.qname; %SVG.feFuncB.content; >

<!-- end of SVG.feFuncB.element -->]]>
<!ENTITY % SVG.feFuncB.attlist "INCLUDE" >
<![%SVG.feFuncB.attlist;[
<!ATTLIST %SVG.feFuncB.qname;

 %SVG.Core.attrib;

 type (identity | table | discrete | linear | gamma) #REQUIRED
 tableValues CDATA #IMPLIED
 slope %Number.datatype; #IMPLIED

 intercept %Number.datatype; #IMPLIED

 amplitude %Number.datatype; #IMPLIED

 exponent %Number.datatype; #IMPLIED

 offset %Number.datatype; #IMPLIED

>
<!-- end of SVG.feFuncB.attlist -->]]>
<!-- feFuncA: Filter Effect Function Alpha Element -->
<!ENTITY % SVG.feFuncA.extra.content "" >
<!ENTITY % SVG.feFuncA.element "INCLUDE" >
<![%SVG.feFuncA.element;[
<!ENTITY % SVG.feFuncA.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feFuncA.extra.content;)*"

>
<!ELEMENT %SVG.feFuncA.qname; %SVG.feFuncA.content; >

<!-- end of SVG.feFuncA.element -->]]>
<!ENTITY % SVG.feFuncA.attlist "INCLUDE" >
<![%SVG.feFuncA.attlist;[
<!ATTLIST %SVG.feFuncA.qname;

 %SVG.Core.attrib;

 type (identity | table | discrete | linear | gamma) #REQUIRED
 tableValues CDATA #IMPLIED
 slope %Number.datatype; #IMPLIED

 intercept %Number.datatype; #IMPLIED

 amplitude %Number.datatype; #IMPLIED

 exponent %Number.datatype; #IMPLIED

 offset %Number.datatype; #IMPLIED

>

The specification of the transfer functions is defined by the sub-elements to 'feComponentTransfer':
'feFuncR', transfer function for red component of the input graphic
'feFuncG', transfer function for green component of the input graphic
'feFuncB', transfer function for blue component of the input graphic
'feFuncA', transfer function for alpha component of the input graphic

The attributes below apply to sub-elements 'feFuncR', 'feFuncG', 'feFuncB' and 'feFuncA' define the transfer functions.

http://www.w3.org/TR/SVG/filters.html (21 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Attribute definitions:

type = "identity | table | discrete | linear | gamma"

Indicates the type of component transfer function. The type of function determines the applicability of the other
attributes.

❍ For identity:

C' = C

❍ For table, the function is defined by linear interpolation into a lookup table by attribute tableValues, which
provides a list of n+1 values (i.e., v0 to vn) in order to identify n interpolation ranges. Interpolations use the

following formula.

For a value C pick a k such that:

k/N <= C < (k+1)/N

The result C' is given by:

C' = vk + (C - k/N)*N * (vk+1 - vk)

❍ For discrete, the function is defined by the step function defined by attribute tableValues, which provides a
list of n values (i.e., v0 to vn-1) in order to identify a step function consisting of n steps. The step function is

defined by the following formula.

For a value C pick a k such that:

k/N <= C < (k+1)/N

The result C' is given by:

C' = vk

❍ For linear, the function is defined by the following linear equation:

C' = slope * C + intercept

❍ For gamma, the function is defined by the following exponential function:

C' = amplitude * pow(C, exponent) + offset

Animatable: yes.
tableValues = "(list of <number>s)"

When type="table", the list of <number>s v0,v1,...vn, separated by white space and/or a comma, which define the
lookup table. An empty list results in an identity transfer function. If the attribute is not specified, then the effect is
as if an empty list were provided. If the attribute is not specified, then the effect is as if an empty list were provided.
Animatable: yes.

slope = "<number>"
When type="linear", the slope of the linear function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

intercept = "<number>"
When type="linear", the intercept of the linear function.
If the attribute is not specified, then the effect is as if a value of 0 were specified.

http://www.w3.org/TR/SVG/filters.html (22 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Animatable: yes.
amplitude = "<number>"

When type="gamma", the amplitude of the gamma function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

exponent = "<number>"
When type="gamma", the exponent of the gamma function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

offset = "<number>"
When type="gamma", the offset of the gamma function.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, %filter_primitive_attributes_with_in;, %PresentationAttributes-FilterPrimitives;.

Example feComponentTransfer shows examples of the four types of feComponentTransfer operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="4cm" viewBox="0 0 800 400" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <title>Example feComponentTransfer - Examples of feComponentTransfer operations</title>
 <desc>Four text strings showing the effects of feComponentTransfer:
 an identity function acting as a reference,
 use of the feComponentTransfer table option,
 use of the feComponentTransfer linear option,
 and use of the feComponentTransfer gamma option.</desc>
 <defs>
 <linearGradient id="MyGradient" gradientUnits="userSpaceOnUse"
 x1="100" y1="0" x2="600" y2="0">
 <stop offset="0" stop-color="#ff0000" />
 <stop offset=".33" stop-color="#00ff00" />
 <stop offset=".67" stop-color="#0000ff" />
 <stop offset="1" stop-color="#000000" />
 </linearGradient>
 <filter id="Identity" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feComponentTransfer>
 <feFuncR type="identity"/>
 <feFuncG type="identity"/>
 <feFuncB type="identity"/>
 <feFuncA type="identity"/>
 </feComponentTransfer>
 </filter>
 <filter id="Table" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feComponentTransfer>
 <feFuncR type="table" tableValues="0 0 1 1"/>
 <feFuncG type="table" tableValues="1 1 0 0"/>
 <feFuncB type="table" tableValues="0 1 1 0"/>
 </feComponentTransfer>
 </filter>
 <filter id="Linear" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feComponentTransfer>
 <feFuncR type="linear" slope=".5" intercept=".25"/>
 <feFuncG type="linear" slope=".5" intercept="0"/>
 <feFuncB type="linear" slope=".5" intercept=".5"/>
 </feComponentTransfer>
 </filter>
 <filter id="Gamma" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feComponentTransfer>
 <feFuncR type="gamma" amplitude="2" exponent="5" offset="0"/>
 <feFuncG type="gamma" amplitude="2" exponent="3" offset="0"/>
 <feFuncB type="gamma" amplitude="2" exponent="1" offset="0"/>
 </feComponentTransfer>
 </filter>
 </defs>
 <rect fill="none" stroke="blue"
 x="1" y="1" width="798" height="398"/>
 <g font-family="Verdana" font-size="75"
 font-weight="bold" fill="url(#MyGradient)" >
 <rect x="100" y="0" width="600" height="20" />
 <text x="100" y="90">Identity</text>
 <text x="100" y="190" filter="url(#Table)" >TableLookup</text>
 <text x="100" y="290" filter="url(#Linear)" >LinearFunc</text>
 <text x="100" y="390" filter="url(#Gamma)" >GammaFunc</text>
 </g>
</svg>

http://www.w3.org/TR/SVG/filters.html (23 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Example
feComponentTransfer

View this example as SVG (SVG-enabled browsers only)

15.12 Filter primitive 'feComposite'

This filter performs the combination of the two input images pixel-wise in image space using one of the Porter-Duff
[PORTERDUFF] compositing operations: over, in, atop, out, xor. Additionally, a component-wise arithmetic operation
(with the result clamped between [0..1]) can be applied.

The arithmetic operation is useful for combining the output from the 'feDiffuseLighting' and 'feSpecularLighting' filters with
texture data. It is also useful for implementing dissolve. If the arithmetic operation is chosen, each result pixel is
computed using the following formula:

result = k1*i1*i2 + k2*i1 + k3*i2 + k4

For this filter primitive, the extent of the resulting image might grow as described in the section that describes the filter
primitive subregion.

<!ENTITY % SVG.feComposite.extra.content "" >
<!ENTITY % SVG.feComposite.element "INCLUDE" >
<![%SVG.feComposite.element;[
<!ENTITY % SVG.feComposite.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feComposite.extra.content;)*"

>
<!ELEMENT %SVG.feComposite.qname; %SVG.feComposite.co\

ntent; >
<!-- end of SVG.feComposite.element -->]]>
<!ENTITY % SVG.feComposite.attlist "INCLUDE" >
<![%SVG.feComposite.attlist;[
<!ATTLIST %SVG.feComposite.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 in2 CDATA #REQUIRED
 operator (over | in | out | atop | xor | arithmetic) 'over'
 k1 %Number.datatype; #IMPLIED

 k2 %Number.datatype; #IMPLIED

 k3 %Number.datatype; #IMPLIED

 k4 %Number.datatype; #IMPLIED

>

Attribute definitions:

operator = "over | in | out | atop | xor | arithmetic"
The compositing operation that is to be performed. All of the operator types except arithmetic match the

http://www.w3.org/TR/SVG/filters.html (24 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feComponentTransfer.svg
http://www.w3.org/TR/SVG/refs.html#ref-PORTERDUFF

Filter Effects - SVG 1.1 - 20030114

correspond operation as described in [PORTERDUFF]. The arithmetic operator is described above.
Animatable: yes.

k1 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

k2 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

k3 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

k4 = "<number>"
Only applicable if operator="arithmetic".
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

in2 = "(see in attribute)"
The second input image to the compositing operation. This attribute can take on the same values as the in
attribute.
Animatable: yes.

Example feComposite shows examples of the six types of feComposite operations. It also shows two different
techniques to using the BackgroundImage as part of the compositing operation.

The first two rows render bluish triangles into the background. A filter is applied which composites reddish triangles into
the bluish triangles using one of the compositing operations. The result from compositing is drawn onto an opaque white
temporary surface, and then that result is written to the canvas. (The opaque white temporary surface obliterates the
original bluish triangle.)

The last two rows apply the same compositing operations of reddish triangles into bluish triangles. However, the
compositing result is directly blended into the canvas (the opaque white temporary surface technique is not used). In
some cases, the results are different than when a temporary opaque white surface is used. The original bluish triangle
from the background shines through wherever the compositing operation results in completely transparent pixel. In other
cases, the result from compositing is blended into the bluish triangle, resulting in a different final color value.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="330" height="195" viewBox="0 0 1100 650" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <title>Example feComposite - Examples of feComposite operations</title>
 <desc>Four rows of six pairs of overlapping triangles depicting
 the six different feComposite operators under different
 opacity values and different clearing of the background.</desc>
 <defs>
 <desc>Define two sets of six filters for each of the six compositing operators.
 The first set wipes out the background image by flooding with opaque white.
 The second set does not wipe out the background, with the result
 that the background sometimes shines through and is other cases
 is blended into itself (i.e., "double-counting").</desc>
 <filter id="overFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="inFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="outFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="atopFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="xorFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">

http://www.w3.org/TR/SVG/filters.html (25 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/refs.html#ref-PORTERDUFF

Filter Effects - SVG 1.1 - 20030114

 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="arithmeticFlood" filterUnits="objectBoundingBox"
 x="-5%" y="-5%" width="110%" height="110%">
 <feFlood flood-color="#ffffff" flood-opacity="1" result="flood"/>
 <feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"
 operator="arithmetic" k1=".5" k2=".5" k3=".5" k4=".5"/>
 <feMerge> <feMergeNode in="flood"/> <feMergeNode in="comp"/> </feMerge>
 </filter>
 <filter id="overNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="over" result="comp"/>
 </filter>
 <filter id="inNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="in" result="comp"/>
 </filter>
 <filter id="outNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="out" result="comp"/>
 </filter>
 <filter id="atopNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="atop" result="comp"/>
 </filter>
 <filter id="xorNoFlood" filterUnits="objectBoundingBox" x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" operator="xor" result="comp"/>
 </filter>
 <filter id="arithmeticNoFlood" filterUnits="objectBoundingBox"
 x="-5%" y="-5%" width="110%" height="110%">
 <feComposite in="SourceGraphic" in2="BackgroundImage" result="comp"
 operator="arithmetic" k1=".5" k2=".5" k3=".5" k4=".5"/>
 </filter>
 <path id="Blue100" d="M 0 0 L 100 0 L 100 100 z" fill="#00ffff" />
 <path id="Red100" d="M 0 0 L 0 100 L 100 0 z" fill="#ff00ff" />
 <path id="Blue50" d="M 0 125 L 100 125 L 100 225 z" fill="#00ffff" fill-opacity=".5" />
 <path id="Red50" d="M 0 125 L 0 225 L 100 125 z" fill="#ff00ff" fill-opacity=".5" />
 <g id="TwoBlueTriangles">
 <use xlink:href="#Blue100"/>
 <use xlink:href="#Blue50"/>
 </g>
 <g id="BlueTriangles">
 <use transform="translate(275,25)" xlink:href="#TwoBlueTriangles"/>
 <use transform="translate(400,25)" xlink:href="#TwoBlueTriangles"/>
 <use transform="translate(525,25)" xlink:href="#TwoBlueTriangles"/>
 <use transform="translate(650,25)" xlink:href="#TwoBlueTriangles"/>
 <use transform="translate(775,25)" xlink:href="#TwoBlueTriangles"/>
 <use transform="translate(900,25)" xlink:href="#TwoBlueTriangles"/>
 </g>
 </defs>
 <rect fill="none" stroke="blue" x="1" y="1" width="1098" height="648"/>
 <g font-family="Verdana" font-size="40" shape-rendering="crispEdges">
 <desc>Render the examples using the filters that draw on top of
 an opaque white surface, thus obliterating the background.</desc>
 <g enable-background="new">
 <text x="15" y="75">opacity 1.0</text>
 <text x="15" y="115" font-size="27">(with feFlood)</text>
 <text x="15" y="200">opacity 0.5</text>
 <text x="15" y="240" font-size="27">(with feFlood)</text>
 <use xlink:href="#BlueTriangles"/>
 <g transform="translate(275,25)">
 <use xlink:href="#Red100" filter="url(#overFlood)" />
 <use xlink:href="#Red50" filter="url(#overFlood)" />
 <text x="5" y="275">over</text>
 </g>
 <g transform="translate(400,25)">
 <use xlink:href="#Red100" filter="url(#inFlood)" />
 <use xlink:href="#Red50" filter="url(#inFlood)" />
 <text x="35" y="275">in</text>
 </g>
 <g transform="translate(525,25)">
 <use xlink:href="#Red100" filter="url(#outFlood)" />
 <use xlink:href="#Red50" filter="url(#outFlood)" />
 <text x="15" y="275">out</text>
 </g>
 <g transform="translate(650,25)">
 <use xlink:href="#Red100" filter="url(#atopFlood)" />
 <use xlink:href="#Red50" filter="url(#atopFlood)" />
 <text x="10" y="275">atop</text>
 </g>
 <g transform="translate(775,25)">
 <use xlink:href="#Red100" filter="url(#xorFlood)" />
 <use xlink:href="#Red50" filter="url(#xorFlood)" />
 <text x="15" y="275">xor</text>
 </g>
 <g transform="translate(900,25)">
 <use xlink:href="#Red100" filter="url(#arithmeticFlood)" />
 <use xlink:href="#Red50" filter="url(#arithmeticFlood)" />
 <text x="-25" y="275">arithmetic</text>
 </g>
 </g>
 <g transform="translate(0,325)" enable-background="new">
 <desc>Render the examples using the filters that do not obliterate
 the background, thus sometimes causing the background to continue
 to appear in some cases, and in other cases the background
 image blends into itself ("double-counting").</desc>
 <text x="15" y="75">opacity 1.0</text>
 <text x="15" y="115" font-size="27">(without feFlood)</text>
 <text x="15" y="200">opacity 0.5</text>
 <text x="15" y="240" font-size="27">(without feFlood)</text>

http://www.w3.org/TR/SVG/filters.html (26 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

 <use xlink:href="#BlueTriangles"/>
 <g transform="translate(275,25)">
 <use xlink:href="#Red100" filter="url(#overNoFlood)" />
 <use xlink:href="#Red50" filter="url(#overNoFlood)" />
 <text x="5" y="275">over</text>
 </g>
 <g transform="translate(400,25)">
 <use xlink:href="#Red100" filter="url(#inNoFlood)" />
 <use xlink:href="#Red50" filter="url(#inNoFlood)" />
 <text x="35" y="275">in</text>
 </g>
 <g transform="translate(525,25)">
 <use xlink:href="#Red100" filter="url(#outNoFlood)" />
 <use xlink:href="#Red50" filter="url(#outNoFlood)" />
 <text x="15" y="275">out</text>
 </g>
 <g transform="translate(650,25)">
 <use xlink:href="#Red100" filter="url(#atopNoFlood)" />
 <use xlink:href="#Red50" filter="url(#atopNoFlood)" />
 <text x="10" y="275">atop</text>
 </g>
 <g transform="translate(775,25)">
 <use xlink:href="#Red100" filter="url(#xorNoFlood)" />
 <use xlink:href="#Red50" filter="url(#xorNoFlood)" />
 <text x="15" y="275">xor</text>
 </g>
 <g transform="translate(900,25)">
 <use xlink:href="#Red100" filter="url(#arithmeticNoFlood)" />
 <use xlink:href="#Red50" filter="url(#arithmeticNoFlood)" />
 <text x="-25" y="275">arithmetic</text>
 </g>
 </g>
 </g>
</svg>

Example feComposite

View this example as SVG (SVG-enabled browsers only)

15.13 Filter primitive 'feConvolveMatrix'

feConvolveMatrix applies a matrix convolution filter effect. A convolution combines pixels in the input image with
neighboring pixels to produce a resulting image. A wide variety of imaging operations can be achieved through
convolutions, including blurring, edge detection, sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes how a given pixel value in
the input image is combined with its neighboring pixel values to produce a resulting pixel value. Each result pixel is
determined by applying the kernel matrix to the corresponding source pixel and its neighboring pixels. The basic
convolution formula which is applied to each color value for a given pixel is:

RESULTX,Y = (

 SUM I=0 to [orderY-1] {

 SUM J=0 to [orderX-1] {

 SOURCE X-targetX+J, Y-targetY+I * kernelMatrixorderX-J-1, orderY-I-1

 }
 }

http://www.w3.org/TR/SVG/filters.html (27 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feComposite.svg

Filter Effects - SVG 1.1 - 20030114

) / divisor + bias

where "orderX" and "orderY" represent the X and Y values for the order attribute, "targetX" represents the value of the
targetX attribute, "targetY" represents the value of the targetY attribute, "kernelMatrix" represents the value of the
kernelMatrix attribute, "divisor" represents the value of the divisor attribute, and "bias" represents the value of the bias
attribute.

Note in the above formulas that the values in the kernel matrix are applied such that the kernel matrix is rotated 180
degrees relative to the source and destination images in order to match convolution theory as described in many
computer graphics textbooks.

To illustrate, suppose you have a input image which is 5 pixels by 5 pixels, whose color values for one of the color
channels are as follows:

 0 20 40 235 235
 100 120 140 235 235
 200 220 240 235 235
 225 225 255 255 255
 225 225 255 255 255

and you define a 3-by-3 convolution kernel as follows:

 1 2 3
 4 5 6
 7 8 9

Let's focus on the color value at the second row and second column of the image (source pixel value is 120). Assuming
the simplest case (where the input image's pixel grid aligns perfectly with the kernel's pixel grid) and assuming default
values for attributes divisor, targetX and targetY, then resulting color value will be:

(9* 0 + 8* 20 + 7* 40 +
6*100 + 5*120 + 4*140 +
3*200 + 2*220 + 1*240) / (9+8+7+6+5+4+3+2+1)

Because they operate on pixels, matrix convolutions are inherently resolution-dependent. To make 'feConvolveMatrix
produce resolution-independent results, an explicit value should be provided for either the filterRes attribute on the 'filter'
element and/or attribute kernelUnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate
system (i.e., the coordinate system established by the primitiveUnits attribute). If the pixel grid established by
kernelUnitLength is not scaled to match the pixel grid established by attribute filterRes (implicitly or explicitly), then the
input image will be temporarily rescaled to match its pixels with kernelUnitLength. The convolution happens on the
resampled image. After applying the convolution, the image is resampled back to the original resolution.

When the image must be resampled to match the coordinate system defined by kernelUnitLength prior to convolution, or
resampled to match the device coordinate system after convolution, it is recommended that high quality viewers make
use of appropriate interpolation techniques, for example bilinear or bicubic. Depending on the speed of the available
interpolents, this choice may be affected by the 'image-rendering' property setting. Note that implementations might
choose approaches that minimize or eliminate resampling when not necessary to produce proper results, such as when
the document is zoomed out such that kernelUnitLength is considerably smaller than a device pixel.

http://www.w3.org/TR/SVG/filters.html (28 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Filter Effects - SVG 1.1 - 20030114

<!ENTITY % SVG.feConvolveMatrix.extra.content "" >
<!ENTITY % SVG.feConvolveMatrix.element "INCLUDE" >
<![%SVG.feConvolveMatrix.element;[
<!ENTITY % SVG.feConvolveMatrix.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feConvolveMatrix.extra.content;)*"
>
<!ELEMENT %SVG.feConvolveMatrix.qname; %SVG.feCo\

nvolveMatrix.content; >
<!-- end of SVG.feConvolveMatrix.element -->]]>
<!ENTITY % SVG.feConvolveMatrix.attlist "INCLUDE" >
<![%SVG.feConvolveMatrix.attlist;[
<!ATTLIST %SVG.feConvolveMatrix.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 order %NumberOptionalNumber.datatype; #REQUIRED

 kernelMatrix CDATA #REQUIRED
 divisor %Number.datatype; #IMPLIED

 bias %Number.datatype; #IMPLIED

 targetX %Integer.datatype; #IMPLIED

 targetY %Integer.datatype; #IMPLIED

 edgeMode (duplicate | wrap | none) 'duplicate'
 kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED

 preserveAlpha %Boolean.datatype; #IMPLIED
>

Attribute definitions:

order = "<number-optional-number>"
Indicates the number of cells in each dimension for kernelMatrix. The values provided must be <integer>s greater
than zero. The first number, <orderX>, indicates the number of columns in the matrix. The second number,
<orderY>, indicates the number of rows in the matrix. If <orderY> is not provided, it defaults to <orderX>.
A typical value is order="3". It is recommended that only small values (e.g., 3) be used; higher values may result in
very high CPU overhead and usually do not produce results that justify the impact on performance.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.

kernelMatrix = "<list of numbers>"
The list of <number>s that make up the kernel matrix for the convolution. Values are separated by space
characters and/or a comma. The number of entries in the list must equal <orderX> times <orderY>.
Animatable: yes.

divisor = "<number>"
After applying the kernelMatrix to the input image to yield a number, that number is divided by divisor to yield the
final destination color value. A divisor that is the sum of all the matrix values tends to have an evening effect on
the overall color intensity of the result. It is an error to specify a divisor of zero. The default value is the sum of all
values in kernelMatrix, with the exception that if the sum is zero, then the divisor is set to 1.
Animatable: yes.

bias = "<number>"
After applying the kernelMatrix to the input image to yield a number and applying the divisor, the bias attribute is
added to each component. One application of bias is when it is desirable to have .5 gray value be the zero
response of the filter. If bias is not specified, then the effect is as if a value of zero were specified.
Animatable: yes.

targetX = "<integer>"
Determines the positioning in X of the convolution matrix relative to a given target pixel in the input image. The
leftmost column of the matrix is column number zero. The value must be such that: 0 <= targetX < orderX. By
default, the convolution matrix is centered in X over each pixel of the input image (i.e., targetX = floor (orderX /
2)).
Animatable: yes.

targetY = "<integer>"

http://www.w3.org/TR/SVG/filters.html (29 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Determines the positioning in Y of the convolution matrix relative to a given target pixel in the input image. The
topmost row of the matrix is row number zero. The value must be such that: 0 <= targetY < orderY. By default, the
convolution matrix is centered in Y over each pixel of the input image (i.e., targetY = floor (orderY / 2)).
Animatable: yes.

edgeMode = "duplicate | wrap | none"

Determines how to extend the input image as necessary with color values so that the matrix operations can be
applied when the kernel is positioned at or near the edge of the input image.

"duplicate" indicates that the input image is extended along each of its borders as necessary by duplicating the
color values at the given edge of the input image.

Original N-by-M image, where m=M-1 and n=N-1:
 11 12 ... 1m 1M
 21 22 ... 2m 2M

 n1 n2 ... nm nM
 N1 N2 ... Nm NM
Extended by two pixels using "duplicate":
 11 11 11 12 ... 1m 1M 1M 1M
 11 11 11 12 ... 1m 1M 1M 1M
 11 11 11 12 ... 1m 1M 1M 1M
 21 21 21 22 ... 2m 2M 2M 2M

 n1 n1 n1 n2 ... nm nM nM nM
 N1 N1 N1 N2 ... Nm NM NM NM
 N1 N1 N1 N2 ... Nm NM NM NM
 N1 N1 N1 N2 ... Nm NM NM NM

"wrap" indicates that the input image is extended by taking the color values from the opposite edge of the image.

Extended by two pixels using "wrap":
 nm nM n1 n2 ... nm nM n1 n2
 Nm NM N1 N2 ... Nm NM N1 N2
 1m 1M 11 12 ... 1m 1M 11 12
 2m 2M 21 22 ... 2m 2M 21 22

 nm nM n1 n2 ... nm nM n1 n2
 Nm NM N1 N2 ... Nm NM N1 N2
 1m 1M 11 12 ... 1m 1M 11 12
 2m 2M 21 22 ... 2m 2M 21 22

"none" indicates that the input image is extended with pixel values of zero for R, G, B and A.

Animatable: yes.

kernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified, it
defaults to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as determined
by the value of attribute primitiveUnits) between successive columns and rows, respectively, in the kernelMatrix.
By specifying value(s) for kernelUnitLength, the kernel becomes defined in a scalable, abstract coordinate system.
If kernelUnitLength is not specified, the default value is one pixel in the offscreen bitmap, which is a pixel-based
coordinate system, and thus potentially not scalable. For some level of consistency across display media and user
agents, it is necessary that a value be provided for at least one of filterRes and kernelUnitLength. In some
implementations, the most consistent results and the fastest performance will be achieved if the pixel grid of the
temporary offscreen images aligns with the pixel grid of the kernel.
A negative or zero value is an error (see Error processing).
Animatable: yes.

preserveAlpha = "false | true"
A value of false indicates that the convolution will apply to all channels, including the alpha channel.
A value of true indicates that the convolution will only apply to the color channels. In this case, the filter will
temporarily unpremultiply the color component values, apply the kernel, and then re-premultiply at the end.

http://www.w3.org/TR/SVG/filters.html (30 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

If preserveAlpha is not specified, then the effect is as if a value of false were specified.
Animatable: yes.

15.14 Filter primitive 'feDiffuseLighting'

This filter primitive lights an image using the alpha channel as a bump map. The resulting image is an RGBA opaque
image based on the light color with alpha = 1.0 everywhere. The lighting calculation follows the standard diffuse
component of the Phong lighting model. The resulting image depends on the light color, light position and surface
geometry of the input bump map.

The light map produced by this filter primitive can be combined with a texture image using the multiply term of the
arithmetic 'feComposite' compositing method. Multiple light sources can be simulated by adding several of these light
maps together before applying it to the texture image.

The formulas below make use of 3x3 filters. Because they operate on pixels, such filters are inherently resolution-
dependent. To make 'feDiffuseLighting' produce resolution-independent results, an explicit value should be provided for
either the filterRes attribute on the 'filter' element and/or attribute kernelUnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate
system (i.e., the coordinate system established by the primitiveUnits attribute). If the pixel grid established by
kernelUnitLength is not scaled to match the pixel grid established by attribute filterRes (implicitly or explicitly), then the
input image will be temporarily rescaled to match its pixels with kernelUnitLength. The 3x3 filters are applied to the
resampled image. After applying the filter, the image is resampled back to its original resolution.

When the image must be resampled, it is recommended that high quality viewers make use of appropriate interpolation
techniques, for example bilinear or bicubic. Depending on the speed of the available interpolents, this choice may be
affected by the 'image-rendering' property setting. Note that implementations might choose approaches that minimize or
eliminate resampling when not necessary to produce proper results, such as when the document is zoomed out such
that kernelUnitLength is considerably smaller than a device pixel.

For the formulas that follow, the Norm(Ax,Ay,Az) function is defined as:

Norm(Ax,Ay,Az) = sqrt(Ax^2+Ay^2+Az^2)

The resulting RGBA image is computed as follows:

Dr = kd * N.L * Lr

Dg = kd * N.L * Lg

Db = kd * N.L * Lb

Da = 1.0

where

kd = diffuse lighting constant

N = surface normal unit vector, a function of x and y
L = unit vector pointing from surface to light, a function of x and y in the point and spot light cases
Lr,Lg,Lb = RGB components of light, a function of x and y in the spot light case

N is a function of x and y and depends on the surface gradient as follows:

The surface described by the input alpha image Ain (x,y) is:

Z (x,y) = surfaceScale * Ain (x,y)

Surface normal is calculated using the Sobel gradient 3x3 filter. Different filter kernels are used depending on whether

http://www.w3.org/TR/SVG/filters.html (31 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Filter Effects - SVG 1.1 - 20030114

the given pixel is on the interior or an edge. For each case, the formula is:

Nx (x,y)= - surfaceScale * FACTORx *

 (K x(0,0)*I(x-dx,y-dy) + Kx(1,0)*I(x,y-dy) + Kx(2,0)*I(x+dx,y-dy) +

 K x(0,1)*I(x-dx,y) + Kx(1,1)*I(x,y) + Kx(2,1)*I(x+dx,y) +

 K x(0,2)*I(x-dx,y+dy) + Kx(1,2)*I(x,y+dy) + Kx(2,2)*I(x+dx,y+dy))

Ny (x,y)= - surfaceScale * FACTORy *

 (K y(0,0)*I(x-dx,y-dy) + Ky(1,0)*I(x,y-dy) + Ky(2,0)*I(x+dx,y-dy) +

 K y(0,1)*I(x-dx,y) + Ky(1,1)*I(x,y) + Ky(2,1)*I(x+dx,y) +

 K y(0,2)*I(x-dx,y+dy) + Ky(1,2)*I(x,y+dy) + Ky(2,2)*I(x+dx,y+dy))

Nz (x,y) = 1.0

N = (Nx, Ny, Nz) / Norm((Nx,Ny,Nz))

In these formulas, the dx and dy values (e.g., I(x-dx,y-dy)), represent deltas relative to a given (x,y) position for
the purpose of estimating the slope of the surface at that point. These deltas are determined by the value (explicit or
implicit) of attribute kernelUnitLength.

Top/left corner:

FACTORx=2/(3*dx)

Kx =

 | 0 0 0 |
 | 0 -2 2 |
 | 0 -1 1 |

FACTORy=2/(3*dy)

Ky =

 | 0 0 0 |
 | 0 -2 -1 |
 | 0 2 1 |

Top row:

FACTORx=1/(3*dx)

Kx =

 | 0 0 0 |
 | -2 0 2 |
 | -1 0 1 |

FACTORy=1/(2*dy)

Ky =

 | 0 0 0 |
 | -1 -2 -1 |
 | 1 2 1 |

Top/right corner:

FACTORx=2/(3*dx)

Kx =

 | 0 0 0 |
 | -2 2 0 |
 | -1 1 0 |

FACTORy=2/(3*dy)

Ky =

 | 0 0 0 |
 | -1 -2 0 |
 | 1 2 0 |

Left column:

FACTORx=1/(2*dx)

Kx =

 | 0 -1 1 |
 | 0 -2 2 |
 | 0 -1 1 |

FACTORy=1/(3*dy)

Ky =

 | 0 -2 -1 |
 | 0 0 0 |
 | 0 2 1 |

Interior pixels:

FACTORx=1/(4*dx)

Kx =

 | -1 0 1 |
 | -2 0 2 |
 | -1 0 1 |

FACTORy=1/(4*dy)

Ky =

 | -1 -2 -1 |
 | 0 0 0 |
 | 1 2 1 |

Right column:

FACTORx=1/(2*dx)

Kx =

 | -1 1 0|
 | -2 2 0|
 | -1 1 0|

FACTORy=1/(3*dy)

Ky =

 | -1 -2 0 |
 | 0 0 0 |
 | 1 2 0 |

http://www.w3.org/TR/SVG/filters.html (32 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Bottom/left corner:

FACTORx=2/(3*dx)

Kx =

 | 0 -1 1 |
 | 0 -2 2 |
 | 0 0 0 |

FACTORy=2/(3*dy)

Ky =

 | 0 -2 -1 |
 | 0 2 1 |
 | 0 0 0 |

Bottom row:

FACTORx=1/(3*dx)

Kx =

 | -1 0 1 |
 | -2 0 2 |
 | 0 0 0 |

FACTORy=1/(2*dy)

Ky =

 | -1 -2 -1 |
 | 1 2 1 |
 | 0 0 0 |

Bottom/right corner:

FACTORx=2/(3*dx)

Kx =

 | -1 1 0 |
 | -2 2 0 |
 | 0 0 0 |

FACTORy=2/(3*dy)

Ky =

 | -1 -2 0 |
 | 1 2 0 |
 | 0 0 0 |

L, the unit vector from the image sample to the light, is calculated as follows:

For Infinite light sources it is constant:

Lx = cos(azimuth)*cos(elevation)

Ly = sin(azimuth)*cos(elevation)

Lz = sin(elevation)

For Point and spot lights it is a function of position:

Lx = Lightx - x

Ly = Lighty - y

Lz = Lightz - Z(x,y)

L = (Lx, Ly, Lz) / Norm(Lx, Ly, Lz)

where Lightx, Lighty, and Lightz are the input light position.

Lr,Lg,Lb, the light color vector, is a function of position in the spot light case only:

Lr = Lightr*pow((-L.S),specularExponent)

Lg = Lightg*pow((-L.S),specularExponent)

Lb = Lightb*pow((-L.S),specularExponent)

where S is the unit vector pointing from the light to the point (pointsAtX, pointsAtY, pointsAtZ) in the x-y plane:

Sx = pointsAtX - Lightx

Sy = pointsAtY - Lighty

Sz = pointsAtZ - Lightz

S = (Sx, Sy, Sz) / Norm(Sx, Sy, Sz)

If L.S is positive, no light is present. (Lr = Lg = Lb = 0)

http://www.w3.org/TR/SVG/filters.html (33 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

<!ENTITY % SVG.feDiffuseLighting.extra.content "" >
<!ENTITY % SVG.feDiffuseLighting.element "INCLUDE" >
<![%SVG.feDiffuseLighting.element;[
<!ENTITY % SVG.feDiffuseLighting.content
 "((%SVG.feDistantLight.qname; | %SVG.fePointLight.qname;

 | %SVG.feSpotLight.qname;), (%SVG.animate.qname; | %SVG.set.qname;

 | %SVG.animateColor.qname; %SVG.feDiffuseLig\

hting.extra.content;)*)"
>
<!ELEMENT %SVG.feDiffuseLighting.qname; %SVG.fe\

DiffuseLighting.content; >
<!-- end of SVG.feDiffuseLighting.element -->]]>
<!ENTITY % SVG.feDiffuseLighting.attlist "INCLUDE" >
<![%SVG.feDiffuseLighting.attlist;[
<!ATTLIST %SVG.feDiffuseLighting.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 lighting-color %SVGColor.datatype; #IMPLIED

 surfaceScale %Number.datatype; #IMPLIED

 diffuseConstant %Number.datatype; #IMPLIED

 kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED

>

Attribute definitions:

surfaceScale = "<number>"
height of surface when Ain = 1.

If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

diffuseConstant = "<number>"
kd in Phong lighting model. In SVG, this can be any non-negative number.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

kernelUnitLength = "<number-optional-number>"
The first number is the <dx> value. The second number is the <dy> value. If the <dy> value is not specified, it
defaults to the same value as <dx>. Indicates the intended distance in current filter units (i.e., units as determined
by the value of attribute primitiveUnits) for dx and dy, respectively, in the surface normal calculation formulas. By
specifying value(s) for kernelUnitLength, the kernel becomes defined in a scalable, abstract coordinate system. If
kernelUnitLength is not specified, the dx and dy values should represent very small deltas relative to a given (x,
y) position, which might be implemented in some cases as one pixel in the intermediate image offscreen bitmap,
which is a pixel-based coordinate system, and thus potentially not scalable. For some level of consistency across
display media and user agents, it is necessary that a value be provided for at least one of filterRes and
kernelUnitLength. Discussion of intermediate images are in the Introduction and in the description of attribute
filterRes.
A negative or zero value is an error (see Error processing).
Animatable: yes.

The light source is defined by one of the child elements 'feDistantLight', 'fePointLight' or 'feSpotLight'. The light color is
specified by property 'lighting-color'.

15.15 Filter primitive 'feDisplacementMap'

This filter primitive uses the pixels values from the image from in2 to spatially displace the image from in. This is the
transformation to be performed:

http://www.w3.org/TR/SVG/filters.html (34 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

P'(x,y) <- P(x + scale * (XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(x,y) is the input image, in, and P'(x,y) is the destination. XC(x,y) and YC(x,y) are the component values of the
designated by the xChannelSelector and yChannelSelector. For example, to use the R component of in2 to control
displacement in x and the G component of Image2 to control displacement in y, set xChannelSelector to "R" and
yChannelSelector to "G".

The displacement map defines the inverse of the mapping performed.

The calculations using the pixel values from in2 are performed using non-premultiplied color values. If the image from in2
consists of premultiplied color values, those values are automatically converted into non-premultiplied color values
before performing this operation.

This filter can have arbitrary non-localized effect on the input which might require substantial buffering in the processing
pipeline. However with this formulation, any intermediate buffering needs can be determined by scale which represents
the maximum range of displacement in either x or y.

When applying this filter, the source pixel location will often lie between several source pixels. In this case it is
recommended that high quality viewers apply an interpolent on the surrounding pixels, for example bilinear or bicubic,
rather than simply selecting the nearest source pixel. Depending on the speed of the available interpolents, this choice
may be affected by the 'image-rendering' property setting.

The 'color-interpolation-filters' property only applies to the in2 source image and does not apply to the in source image.

<!ENTITY % SVG.feDisplacementMap.extra.content "" >
<!ENTITY % SVG.feDisplacementMap.element "INCLUDE" >
<![%SVG.feDisplacementMap.element;[
<!ENTITY % SVG.feDisplacementMap.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feDisplacementMap.extra.content;)*"
>
<!ELEMENT %SVG.feDisplacementMap.qname; %SVG.fe\

DisplacementMap.content; >
<!-- end of SVG.feDisplacementMap.element -->]]>
<!ENTITY % SVG.feDisplacementMap.attlist "INCLUDE" >
<![%SVG.feDisplacementMap.attlist;[
<!ATTLIST %SVG.feDisplacementMap.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 in2 CDATA #REQUIRED
 scale %Number.datatype; #IMPLIED

 xChannelSelector (R | G | B | A) 'A'
 yChannelSelector (R | G | B | A) 'A'
>

Attribute definitions:

scale = "<number>"
Displacement scale factor. The amount is expressed in the coordinate system established by attribute
primitiveUnits on the 'filter' element.
When the value of this attribute is 0, this operation has no effect on the source image.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

xChannelSelector = "R | G | B | A"
Indicates which channel from in2 to use to displace the pixels in in along the x-axis.
Animatable: yes.

yChannelSelector = "R | G | B | A"
Indicates which channel from in2 to use to displace the pixels in in along the y-axis.

http://www.w3.org/TR/SVG/filters.html (35 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Filter Effects - SVG 1.1 - 20030114

Animatable: yes.
in2 = "(see in attribute)"

The second input image, which is used to displace the pixels in the image from attribute in. This attribute can take
on the same values as the in attribute.
Animatable: yes.

15.16 Filter primitive 'feFlood'

This filter primitive creates a rectangle filled with the color and opacity values from properties 'flood-color' and 'flood-
opacity'. The rectangle is as large as the filter primitive subregion established by the x, y, width and height attributes on
the 'feFlood' element.

<!ENTITY % SVG.feFlood.extra.content "" >
<!ENTITY % SVG.feFlood.element "INCLUDE" >
<![%SVG.feFlood.element;[
<!ENTITY % SVG.feFlood.content
 "(%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateColor.qname;

 %SVG.feFlood.extra.content;)*"
>
<!ELEMENT %SVG.feFlood.qname; %SVG.feFlood.content; >

<!-- end of SVG.feFlood.element -->]]>
<!ENTITY % SVG.feFlood.attlist "INCLUDE" >
<![%SVG.feFlood.attlist;[
<!ATTLIST %SVG.feFlood.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 flood-color %SVGColor.datatype; #IMPLIED

 flood-opacity %OpacityValue.datatype; #IMPLIED
>

The 'flood-color' property indicates what color to use to flood the current filter primitive subregion. The keyword
currentColor and ICC colors can be specified in the same manner as within a <paint> specification for the 'fill' and
'stroke' properties.

'flood-color'
Value: currentColor |

<color> [icc-color(<name>[,<icccolorvalue>]*)] |
inherit

Initial: black
Applies to: 'feFlood' elements
Inherited: no
Percentages: N/A
Media: visual
Animatable: yes

The 'flood-opacity' property defines the opacity value to use across the entire filter primitive subregion.

'flood-opacity'
Value: <opacity-value> | inherit
Initial: 1
Applies to: 'feFlood' elements
Inherited: no
Percentages: N/A

http://www.w3.org/TR/SVG/filters.html (36 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Filter Effects - SVG 1.1 - 20030114

Media: visual
Animatable: yes

15.17 Filter primitive 'feGaussianBlur'

This filter primitive performs a Gaussian blur on the input image.

The Gaussian blur kernel is an approximation of the normalized convolution:

H(x) = exp(-x2/ (2s2)) / sqrt(2* pi*s2)

where 's' is the standard deviation specified by stdDeviation.

The value of stdDeviation can be either one or two numbers. If two numbers are provided, the first number represents a
standard deviation value along the x-axis of the current coordinate system and the second value represents a standard
deviation in Y. If one number is provided, then that value is used for both X and Y.

Even if only one value is provided for stdDeviation, this can be implemented as a separable convolution.

For larger values of 's' (s >= 2.0), an approximation can be used: Three successive box-blurs build a piece-wise
quadratic convolution kernel, which approximates the Gaussian kernel to within roughly 3%.

let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)

... if d is odd, use three box-blurs of size 'd', centered on the output pixel.

... if d is even, two box-blurs of size 'd' (the first one centered on the pixel boundary between the output pixel and the one
to the left, the second one centered on the pixel boundary between the output pixel and the one to the right) and one box
blur of size 'd+1' centered on the output pixel.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input, SourceAlpha.
The implementation may notice this and optimize the single channel case. If the input has infinite extent and is constant,
this operation has no effect. If the input has infinite extent and is a tile, the filter is evaluated with periodic boundary
conditions.

<!ENTITY % SVG.feGaussianBlur.extra.content "" >
<!ENTITY % SVG.feGaussianBlur.element "INCLUDE" >
<![%SVG.feGaussianBlur.element;[
<!ENTITY % SVG.feGaussianBlur.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feGaussianBlur.extra.content;)*"
>
<!ELEMENT %SVG.feGaussianBlur.qname; %SVG.feGaussi\

anBlur.content; >
<!-- end of SVG.feGaussianBlur.element -->]]>
<!ENTITY % SVG.feGaussianBlur.attlist "INCLUDE" >
<![%SVG.feGaussianBlur.attlist;[
<!ATTLIST %SVG.feGaussianBlur.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 stdDeviation %NumberOptionalNumber.datatype; #IMPLIED

>

Attribute definitions:

stdDeviation = "<number-optional-number>"
The standard deviation for the blur operation. If two <number>s are provided, the first number represents a

http://www.w3.org/TR/SVG/filters.html (37 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

standard deviation value along the x-axis of the coordinate system established by attribute primitiveUnits on the
'filter' element. The second value represents a standard deviation in Y. If one number is provided, then that value
is used for both X and Y.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.
e., the result is a transparent black image).
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

The example at the start of this chapter makes use of the feGaussianBlur filter primitive to create a drop shadow effect.

15.18 Filter primitive 'feImage'

This filter primitive refers to a graphic external to this filter element, which is loaded or rendered into an RGBA raster and
becomes the result of the filter primitive.

This filter primitive can refer to an external image or can be a reference to another piece of SVG. It produces an image
similar to the built-in image source SourceGraphic except that the graphic comes from an external source.

If the xlink:href references a stand-alone image resource such as a JPEG, PNG or SVG file, then the image resource is
rendered according to the behavior of the 'image' element; otherwise, the referenced resource is rendered according to
the behavior of the 'use' element. In either case, the current user coordinate system depends on the value of attribute
primitiveUnits on the 'filter' element. The processing of the preserveAspectRatio attribute on the 'feImage' element is
identical to that of the 'image' element.

When the referenced image must be resampled to match the device coordinate system, it is recommended that high
quality viewers make use of appropriate interpolation techniques, for example bilinear or bicubic. Depending on the
speed of the available interpolents, this choice may be affected by the 'image-rendering' property setting.

<!ENTITY % SVG.feImage.extra.content "" >
<!ENTITY % SVG.feImage.element "INCLUDE" >
<![%SVG.feImage.element;[
<!ENTITY % SVG.feImage.content
 "(%SVG.animate.qname; | %SVG.set.qname; | %SVG.animateTransform.qname;

 %SVG.feImage.extra.content;)*"
>
<!ELEMENT %SVG.feImage.qname; %SVG.feImage.content; >

<!-- end of SVG.feImage.element -->]]>
<!ENTITY % SVG.feImage.attlist "INCLUDE" >
<![%SVG.feImage.attlist;[
<!ATTLIST %SVG.feImage.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.FilterPrimitive.attrib;

 %SVG.XLinkEmbed.attrib;

 %SVG.External.attrib;

 preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
>

15.19 Filter primitive 'feMerge'

This filter primitive composites input image layers on top of each other using the over operator with Input1
(corresponding to the first 'feMergeNode' child element) on the bottom and the last specified input, InputN (corresponding
to the last 'feMergeNode' child element), on top.

Many effects produce a number of intermediate layers in order to create the final output image. This filter allows us to

http://www.w3.org/TR/SVG/filters.html (38 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Filter Effects - SVG 1.1 - 20030114

collapse those into a single image. Although this could be done by using n-1 Composite-filters, it is more convenient to
have this common operation available in this form, and offers the implementation some additional flexibility.

Each 'feMerge' element can have any number of 'feMergeNode' subelements, each of which has an in attribute.

The canonical implementation of feMerge is to render the entire effect into one RGBA layer, and then render the
resulting layer on the output device. In certain cases (in particular if the output device itself is a continuous tone device),
and since merging is associative, it might be a sufficient approximation to evaluate the effect one layer at a time and
render each layer individually onto the output device bottom to top.

If the topmost image input is SourceGraphic and this 'feMerge' is the last filter primitive in the filter, the implementation is
encouraged to render the layers up to that point, and then render the SourceGraphic directly from its vector description
on top.

<!ENTITY % SVG.feMerge.extra.content "" >
<!ENTITY % SVG.feMerge.element "INCLUDE" >
<![%SVG.feMerge.element;[
<!ENTITY % SVG.feMerge.content
 "(%SVG.feMergeNode.qname; %SVG.feMerge.extra.\

content;)*"
>
<!ELEMENT %SVG.feMerge.qname; %SVG.feMerge.content; >

<!-- end of SVG.feMerge.element -->]]>
<!ENTITY % SVG.feMerge.attlist "INCLUDE" >
<![%SVG.feMerge.attlist;[
<!ATTLIST %SVG.feMerge.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitive.attrib;

>
<!-- end of SVG.feMerge.attlist -->]]>
<!-- feMergeNode: Filter Effect Merge Node Element -->
<!ENTITY % SVG.feMergeNode.extra.content "" >
<!ENTITY % SVG.feMergeNode.element "INCLUDE" >
<![%SVG.feMergeNode.element;[
<!ENTITY % SVG.feMergeNode.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feMergeNode.extra.content;)*"

>
<!ELEMENT %SVG.feMergeNode.qname; %SVG.feMergeNode.co\

ntent; >
<!-- end of SVG.feMergeNode.element -->]]>
<!ENTITY % SVG.feMergeNode.attlist "INCLUDE" >
<![%SVG.feMergeNode.attlist;[
<!ATTLIST %SVG.feMergeNode.qname;

 %SVG.Core.attrib;

 in CDATA #IMPLIED
>

The example at the start of this chapter makes use of the feMerge filter primitive to composite two intermediate filter
results together.

15.20 Filter primitive 'feMorphology'

This filter primitive performs "fattening" or "thinning" of artwork. It is particularly useful for fattening or thinning an alpha
channel.

The dilation (or erosion) kernel is a rectangle with a width of 2*x-radius and a height of 2*y-radius. In dilation, the output
pixel is the individual component-wise maximum of the corresponding R,G,B,A values in the input image's kernel
rectangle. In erosion, the output pixel is the individual component-wise minimum of the corresponding R,G,B,A values in

http://www.w3.org/TR/SVG/filters.html (39 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

the input image's kernel rectangle.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input, SourceAlpha.
In that case, the implementation might want to optimize the single channel case.

If the input has infinite extent and is constant, this operation has no effect. If the input has infinite extent and is a tile, the
filter is evaluated with periodic boundary conditions.

Because 'feMorphology' operates on premultipied color values, it will always result in color values less than or equal to
the alpha channel.

<!ENTITY % SVG.feMorphology.extra.content "" >
<!ENTITY % SVG.feMorphology.element "INCLUDE" >
<![%SVG.feMorphology.element;[
<!ENTITY % SVG.feMorphology.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feMorphology.extra.content;)*"
>
<!ELEMENT %SVG.feMorphology.qname; %SVG.feMorphology\

.content; >
<!-- end of SVG.feMorphology.element -->]]>
<!ENTITY % SVG.feMorphology.attlist "INCLUDE" >
<![%SVG.feMorphology.attlist;[
<!ATTLIST %SVG.feMorphology.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 operator (erode | dilate) 'erode'
 radius %NumberOptionalNumber.datatype; #IMPLIED

>

Attribute definitions:

operator = "erode | dilate"
A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source graphic.
Animatable: yes.

radius = "<number-optional-number>"
The radius (or radii) for the operation. If two <number>s are provided, the first number represents a x-radius and
the second value represents a y-radius. If one number is provided, then that value is used for both X and Y. The
values are in the coordinate system established by attribute primitiveUnits on the 'filter' element.
A negative value is an error (see Error processing). A value of zero disables the effect of the given filter primitive (i.
e., the result is a transparent black image).
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

Example feMorphology shows examples of the four types of feMorphology operations.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="7cm" viewBox="0 0 700 500" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <title>Example feMorphology - Examples of erode and dilate</title>
 <desc>Five text strings drawn as outlines.
 The first is unfiltered. The second and third use 'erode'.
 The fourth and fifth use 'dilate'.</desc>
 <defs>
 <filter id="Erode3">
 <feMorphology operator="erode" in="SourceGraphic" radius="3" />
 </filter>
 <filter id="Erode6">
 <feMorphology operator="erode" in="SourceGraphic" radius="6" />
 </filter>
 <filter id="Dilate3">
 <feMorphology operator="dilate" in="SourceGraphic" radius="3" />
 </filter>

http://www.w3.org/TR/SVG/filters.html (40 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

 <filter id="Dilate6">
 <feMorphology operator="dilate" in="SourceGraphic" radius="6" />
 </filter>
 </defs>
 <rect fill="none" stroke="blue" stroke-width="2"
 x="1" y="1" width="698" height="498"/>
 <g enable-background="new" >
 <g font-family="Verdana" font-size="75"
 fill="none" stroke="black" stroke-width="6" >
 <text x="50" y="90">Unfiltered</text>
 <text x="50" y="180" filter="url(#Erode3)" >Erode radius 3</text>
 <text x="50" y="270" filter="url(#Erode6)" >Erode radius 6</text>
 <text x="50" y="360" filter="url(#Dilate3)" >Dilate radius 3</text>
 <text x="50" y="450" filter="url(#Dilate6)" >Dilate radius 6</text>
 </g>
 </g>
</svg>

Example
feMorphology

View this example as SVG (SVG-enabled browsers only)

15.21 Filter primitive 'feOffset'

This filter primitive offsets the input image relative to its current position in the image space by the specified vector.

This is important for effects like drop shadows.

When applying this filter, the destination location may be offset by a fraction of a pixel in device space. In this case a high
quality viewer should make use of appropriate interpolation techniques, for example bilinear or bicubic. This is especially
recommended for dynamic viewers where this interpolation provides visually smoother movement of images. For static
viewers this is less of a concern. Close attention should be made to the 'image-rendering' property setting to determine
the authors intent.

<!ENTITY % SVG.feOffset.extra.content "" >
<!ENTITY % SVG.feOffset.element "INCLUDE" >
<![%SVG.feOffset.element;[
<!ENTITY % SVG.feOffset.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feOffset.extra.content;)*"

>
<!ELEMENT %SVG.feOffset.qname; %SVG.feOffset.content; >

<!-- end of SVG.feOffset.element -->]]>
<!ENTITY % SVG.feOffset.attlist "INCLUDE" >
<![%SVG.feOffset.attlist;[
<!ATTLIST %SVG.feOffset.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

http://www.w3.org/TR/SVG/filters.html (41 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feMorphology.svg
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers
http://www.w3.org/TR/SVG/conform.html#ConformingHighQualitySVGViewers

Filter Effects - SVG 1.1 - 20030114

 dx %Number.datatype; #IMPLIED

 dy %Number.datatype; #IMPLIED

>

Attribute definitions:

dx = "<number>"
The amount to offset the input graphic along the x-axis. The offset amount is expressed in the coordinate system
established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

dy = "<number>"
The amount to offset the input graphic along the y-axis. The offset amount is expressed in the coordinate system
established by attribute primitiveUnits on the 'filter' element.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

The example at the start of this chapter makes use of the feOffset filter primitive to offset the drop shadow from the
original source graphic.

15.22 Filter primitive 'feSpecularLighting'

This filter primitive lights a source graphic using the alpha channel as a bump map. The resulting image is an RGBA
image based on the light color. The lighting calculation follows the standard specular component of the Phong lighting
model. The resulting image depends on the light color, light position and surface geometry of the input bump map. The
result of the lighting calculation is added. The filter primitive assumes that the viewer is at infinity in the z direction (i.e.,
the unit vector in the eye direction is (0,0,1) everywhere).

This filter primitive produces an image which contains the specular reflection part of the lighting calculation. Such a map
is intended to be combined with a texture using the add term of the arithmetic 'feComposite' method. Multiple light
sources can be simulated by adding several of these light maps before applying it to the texture image.

The resulting RGBA image is computed as follows:

Sr = ks * pow(N.H, specularExponent) * Lr

Sg = ks * pow(N.H, specularExponent) * Lg

Sb = ks * pow(N.H, specularExponent) * Lb

Sa = max(Sr, Sg, Sb)

where

ks = specular lighting constant

N = surface normal unit vector, a function of x and y
H = "halfway" unit vector between eye unit vector and light unit vector

Lr,Lg,Lb = RGB components of light

See 'feDiffuseLighting' for definition of N and (Lr, Lg, Lb).

The definition of H reflects our assumption of the constant eye vector E = (0,0,1):

H = (L + E) / Norm(L+E)

where L is the light unit vector.

http://www.w3.org/TR/SVG/filters.html (42 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Unlike the 'feDiffuseLighting', the 'feSpecularLighting' filter produces a non-opaque image. This is due to the fact that the
specular result (Sr,Sg,Sb,Sa) is meant to be added to the textured image. The alpha channel of the result is the max of

the color components, so that where the specular light is zero, no additional coverage is added to the image and a fully
white highlight will add opacity.

The 'feDiffuseLighting' and 'feSpecularLighting' filters will often be applied together. An implementation may detect this
and calculate both maps in one pass, instead of two.

<!ENTITY % SVG.feSpecularLighting.extra.content "" >
<!ENTITY % SVG.feSpecularLighting.element "INCLUDE" >
<![%SVG.feSpecularLighting.element;[
<!ENTITY % SVG.feSpecularLighting.content
 "((%SVG.feDistantLight.qname; | %SVG.fePointLight.qname;

 | %SVG.feSpotLight.qname;), (%SVG.animate.qname; | %SVG.set.qname;

 | %SVG.animateColor.qname; %SVG.feSpecularLi\

ghting.extra.content;)*)"
>
<!ELEMENT %SVG.feSpecularLighting.qname; %SVG.\

feSpecularLighting.content; >
<!-- end of SVG.feSpecularLighting.element -->]]>
<!ENTITY % SVG.feSpecularLighting.attlist "INCLUDE" >
<![%SVG.feSpecularLighting.attlist;[
<!ATTLIST %SVG.feSpecularLighting.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Color.attrib;

 %SVG.FilterColor.attrib;

 %SVG.Color.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

 lighting-color %SVGColor.datatype; #IMPLIED

 surfaceScale %Number.datatype; #IMPLIED

 specularConstant %Number.datatype; #IMPLIED

 specularExponent %Number.datatype; #IMPLIED

 kernelUnitLength %NumberOptionalNumber.datatype; #IMPLIED

>

Attribute definitions:

surfaceScale = "<number>"
height of surface when Ain = 1.

If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

specularConstant = "<number>"
ks in Phong lighting model. In SVG, this can be any non-negative number.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

specularExponent = "<number>"
Exponent for specular term, larger is more "shiny". Range 1.0 to 128.0.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

The light source is defined by one of the child elements 'feDistantLight', 'fePointLight' or 'feDistantLight'. The light color is
specified by property 'lighting-color'.

The example at the start of this chapter makes use of the feSpecularLighting filter primitive to achieve a highly reflective,
3D glowing effect.

http://www.w3.org/TR/SVG/filters.html (43 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

15.23 Filter primitive 'feTile'

This filter primitive fills a target rectangle with a repeated, tiled pattern of an input image. The target rectangle is as large
as the filter primitive subregion established by the x, y, width and height attributes on the 'feTile' element.

Typically, the input image has been defined with its own filter primitive subregion in order to define a reference tile.
'feTile' replicates the reference tile in both X and Y to completely fill the target rectangle. The top/left corner of each given
tile is at location (x+i*width,y+j*height), where (x,y) represents the top/left of the input image's filter primitive
subregion, width and height represent the width and height of the input image's filter primitive subregion, and i and j
can be any integer value. In most cases, the input image will have a smaller filter primitive subregion than the 'feTile' in
order to achieve a repeated pattern effect.

Implementers must take appropriate measures in constructing the tiled image to avoid artifacts between tiles, particularly
in situations where the user to device transform includes shear and/or rotation. Unless care is taken, interpolation can
lead to edge pixels in the tile having opacity values lower or higher than expected due to the interaction of painting
adjacent tiles which each have partial overlap with particular pixels.

<!ENTITY % SVG.feTile.extra.content "" >
<!ENTITY % SVG.feTile.element "INCLUDE" >
<![%SVG.feTile.element;[
<!ENTITY % SVG.feTile.content
 "(%SVG.animate.qname; | %SVG.set.qname; %SVG.feTile.extra.content;)*"

>
<!ELEMENT %SVG.feTile.qname; %SVG.feTile.content; >

<!-- end of SVG.feTile.element -->]]>
<!ENTITY % SVG.feTile.attlist "INCLUDE" >
<![%SVG.feTile.attlist;[
<!ATTLIST %SVG.feTile.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitiveWithIn.attrib;

>

15.24 Filter primitive 'feTurbulence'

This filter primitive creates an image using the Perlin turbulence function. It allows the synthesis of artificial textures like
clouds or marble. For a detailed description the of the Perlin turbulence function, see "Texturing and Modeling", Ebert et
al, AP Professional, 1994. The resulting image will fill the entire filter primitive subregion for this filter primitive.

It is possible to create bandwidth-limited noise by synthesizing only one octave.

The C code below shows the exact algorithm used for this filter effect.

For fractalSum, you get a turbFunctionResult that is aimed at a range of -1 to 1 (the actual result might exceed this range
in some cases). To convert to a color value, use the formula colorValue = ((turbFunctionResult * 255) +
255) / 2, then clamp to the range 0 to 255.

For turbulence, you get a turbFunctionResult that is aimed at a range of 0 to 1 (the actual result might exceed this range
in some cases). To convert to a color value, use the formula colorValue = (turbFunctionResult * 255), then
clamp to the range 0 to 255.

The following order is used for applying the pseudo random numbers. An initial seed value is computed based on
attribute seed. Then the implementation computes the lattice points for R, then continues getting additional pseudo
random numbers relative to the last generated pseudo random number and computes the lattice points for G, and so on
for B and A.

The generated color and alpha values are in the color space determined by the value of property 'color-interpolation-

http://www.w3.org/TR/SVG/filters.html (44 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

filters':

/* Produces results in the range [1, 2**31 - 2].
Algorithm is: r = (a * r) mod m
where a = 16807 and m = 2**31 - 1 = 2147483647
See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
To test: the algorithm should produce the result 1043618065
as the 10,000th generated number if the original seed is 1.
*/
#define RAND_m 2147483647 /* 2**31 - 1 */
#define RAND_a 16807 /* 7**5; primitive root of m */
#define RAND_q 127773 /* m / a */
#define RAND_r 2836 /* m % a */
long setup_seed(long lSeed)
{
 if (lSeed <= 0) lSeed = -(lSeed % (RAND_m - 1)) + 1;
 if (lSeed > RAND_m - 1) lSeed = RAND_m - 1;
 return lSeed;
}
long random(long lSeed)
{
 long result;
 result = RAND_a * (lSeed % RAND_q) - RAND_r * (lSeed / RAND_q);
 if (result <= 0) result += RAND_m;
 return result;
}
#define BSize 0x100
#define BM 0xff
#define PerlinN 0x1000
#define NP 12 /* 2^PerlinN */
#define NM 0xfff
static uLatticeSelector[BSize + BSize + 2];
static double fGradient[4][BSize + BSize + 2][2];
struct StitchInfo
{
 int nWidth; // How much to subtract to wrap for stitching.
 int nHeight;
 int nWrapX; // Minimum value to wrap.
 int nWrapY;
};
static void init(long lSeed)
{
 double s;
 int i, j, k;
 lSeed = setup_seed(lSeed);
 for(k = 0; k < 4; k++)
 {
 for(i = 0; i < BSize; i++)
 {
 uLatticeSelector[i] = i;
 for (j = 0; j < 2; j++)
 fGradient[k][i][j] = (double)(((lSeed = random(lSeed)) % (BSize + BSize)) - BSize) / BSize;
 s = double(sqrt(fGradient[k][i][0] * fGradient[k][i][0] + fGradient[k][i][1] * fGradient[k][i][1]));
 fGradient[k][i][0] /= s;
 fGradient[k][i][1] /= s;
 }
 }
 while(--i)
 {
 k = uLatticeSelector[i];
 uLatticeSelector[i] = uLatticeSelector[j = (lSeed = random(lSeed)) % BSize];
 uLatticeSelector[j] = k;
 }
 for(i = 0; i < BSize + 2; i++)
 {
 uLatticeSelector[BSize + i] = uLatticeSelector[i];
 for(k = 0; k < 4; k++)
 for(j = 0; j < 2; j++)
 fGradient[k][BSize + i][j] = fGradient[k][i][j];
 }
}
#define s_curve(t) (t * t * (3. - 2. * t))
#define lerp(t, a, b) (a + t * (b - a))
double noise2(int nColorChannel, double vec[2], StitchInfo *pStitchInfo)
{
 int bx0, bx1, by0, by1, b00, b10, b01, b11;
 double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
 register i, j;
 t = vec[0] + PerlinN;
 bx0 = (int)t;
 bx1 = bx0+1;
 rx0 = t - (int)t;
 rx1 = rx0 - 1.0f;
 t = vec[1] + PerlinN;
 by0 = (int)t;
 by1 = by0+1;
 ry0 = t - (int)t;
 ry1 = ry0 - 1.0f;
 // If stitching, adjust lattice points accordingly.
 if(pStitchInfo != NULL)
 {
 if(bx0 >= pStitchInfo->nWrapX)
 bx0 -= pStitchInfo->nWidth;
 if(bx1 >= pStitchInfo->nWrapX)
 bx1 -= pStitchInfo->nWidth;
 if(by0 >= pStitchInfo->nWrapY)
 by0 -= pStitchInfo->nHeight;

http://www.w3.org/TR/SVG/filters.html (45 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

 if(by1 >= pStitchInfo->nWrapY)
 by1 -= pStitchInfo->nHeight;
 }
 bx0 &= BM;
 bx1 &= BM;
 by0 &= BM;
 by1 &= BM;
 i = uLatticeSelector[bx0];
 j = uLatticeSelector[bx1];
 b00 = uLatticeSelector[i + by0];
 b10 = uLatticeSelector[j + by0];
 b01 = uLatticeSelector[i + by1];
 b11 = uLatticeSelector[j + by1];
 sx = double(s_curve(rx0));
 sy = double(s_curve(ry0));
 q = fGradient[nColorChannel][b00]; u = rx0 * q[0] + ry0 * q[1];
 q = fGradient[nColorChannel][b10]; v = rx1 * q[0] + ry0 * q[1];
 a = lerp(sx, u, v);
 q = fGradient[nColorChannel][b01]; u = rx0 * q[0] + ry1 * q[1];
 q = fGradient[nColorChannel][b11]; v = rx1 * q[0] + ry1 * q[1];
 b = lerp(sx, u, v);
 return lerp(sy, a, b);
}
double turbulence(int nColorChannel, double *point, double fBaseFreqX, double fBaseFreqY,
 int nNumOctaves, bool bFractalSum, bool bDoStitching,
 double fTileX, double fTileY, double fTileWidth, double fTileHeight)
{
 StitchInfo stitch;
 StitchInfo *pStitchInfo = NULL; // Not stitching when NULL.
 // Adjust the base frequencies if necessary for stitching.
 if(bDoStitching)
 {
 // When stitching tiled turbulence, the frequencies must be adjusted
 // so that the tile borders will be continuous.
 if(fBaseFreqX != 0.0)
 {
 double fLoFreq = double(floor(fTileWidth * fBaseFreqX)) / fTileWidth;
 double fHiFreq = double(ceil(fTileWidth * fBaseFreqX)) / fTileWidth;
 if(fBaseFreqX / fLoFreq < fHiFreq / fBaseFreqX)
 fBaseFreqX = fLoFreq;
 else
 fBaseFreqX = fHiFreq;
 }
 if(fBaseFreqY != 0.0)
 {
 double fLoFreq = double(floor(fTileHeight * fBaseFreqY)) / fTileHeight;
 double fHiFreq = double(ceil(fTileHeight * fBaseFreqY)) / fTileHeight;
 if(fBaseFreqY / fLoFreq < fHiFreq / fBaseFreqY)
 fBaseFreqY = fLoFreq;
 else
 fBaseFreqY = fHiFreq;
 }
 // Set up initial stitch values.
 pStitchInfo = &stitch;
 stitch.nWidth = int(fTileWidth * fBaseFreqX + 0.5f);
 stitch.nWrapX = fTileX * fBaseFreqX + PerlinN + stitch.nWidth;
 stitch.nHeight = int(fTileHeight * fBaseFreqY + 0.5f);
 stitch.nWrapY = fTileY * fBaseFreqY + PerlinN + stitch.nHeight;
 }
 double fSum = 0.0f;
 double vec[2];
 vec[0] = point[0] * fBaseFreqX;
 vec[1] = point[1] * fBaseFreqY;
 double ratio = 1;
 for(int nOctave = 0; nOctave < nNumOctaves; nOctave++)
 {
 if(bFractalSum)
 fSum += double(noise2(nColorChannel, vec, pStitchInfo) / ratio);
 else
 fSum += double(fabs(noise2(nColorChannel, vec, pStitchInfo)) / ratio);
 vec[0] *= 2;
 vec[1] *= 2;
 ratio *= 2;
 if(pStitchInfo != NULL)
 {
 // Update stitch values. Subtracting PerlinN before the multiplication and
 // adding it afterward simplifies to subtracting it once.
 stitch.nWidth *= 2;
 stitch.nWrapX = 2 * stitch.nWrapX - PerlinN;
 stitch.nHeight *= 2;
 stitch.nWrapY = 2 * stitch.nWrapY - PerlinN;
 }
 }
 return fSum;
}

http://www.w3.org/TR/SVG/filters.html (46 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

<!ENTITY % SVG.feTurbulence.extra.content "" >
<!ENTITY % SVG.feTurbulence.element "INCLUDE" >
<![%SVG.feTurbulence.element;[
<!ENTITY % SVG.feTurbulence.content
 "(%SVG.animate.qname; | %SVG.set.qname;

 %SVG.feTurbulence.extra.content;)*"
>
<!ELEMENT %SVG.feTurbulence.qname; %SVG.feTurbulence\

.content; >
<!-- end of SVG.feTurbulence.element -->]]>
<!ENTITY % SVG.feTurbulence.attlist "INCLUDE" >
<![%SVG.feTurbulence.attlist;[
<!ATTLIST %SVG.feTurbulence.qname;

 %SVG.Core.attrib;

 %SVG.FilterColor.attrib;

 %SVG.FilterPrimitive.attrib;

 baseFrequency %NumberOptionalNumber.datatype; #IMPLIED

 numOctaves %Integer.datatype; #IMPLIED

 seed %Number.datatype; #IMPLIED

 stitchTiles (stitch | noStitch) 'noStitch'
 type (fractalNoise | turbulence) 'turbulence'
>

Attribute definitions:

baseFrequency = "<number-optional-number>"
The base frequency (frequencies) parameter(s) for the noise function. If two <number>s are provided, the first
number represents a base frequency in the X direction and the second value represents a base frequency in the Y
direction. If one number is provided, then that value is used for both X and Y.
A negative value for base frequency is an error (see Error processing).
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

numOctaves = "<integer>"
The numOctaves parameter for the noise function.
If the attribute is not specified, then the effect is as if a value of 1 were specified.
Animatable: yes.

seed = "<number>"
The starting number for the pseudo random number generator.
If the attribute is not specified, then the effect is as if a value of 0 were specified.
Animatable: yes.

stitchTiles = "stitch | noStitch"
If stitchTiles="noStitch", no attempt it made to achieve smooth transitions at the border of tiles which contain a
turbulence function. Sometimes the result will show clear discontinuities at the tile borders.
If stitchTiles="stitch", then the user agent will automatically adjust baseFrequency-x and baseFrequency-y values
such that the feTurbulence node's width and height (i.e., the width and height of the current subregion) contains an
integral number of the Perlin tile width and height for the first octave. The baseFrequency will be adjusted up or
down depending on which way has the smallest relative (not absolute) change as follows: Given the frequency,
calculate lowFreq=floor(width*frequency)/width and hiFreq=ceil(width*frequency)/width. If
frequency/lowFreq < hiFreq/frequency then use lowFreq, else use hiFreq. While generating turbulence values,
generate lattice vectors as normal for Perlin Noise, except for those lattice points that lie on the right or bottom
edges of the active area (the size of the resulting tile). In those cases, copy the lattice vector from the opposite
edge of the active area.
Animatable: yes.

type = "fractalNoise | turbulence"
Indicates whether the filter primitive should perform a noise or turbulence function.
Animatable: yes.

Example feTurbulence shows the effects of various parameter settings for feTurbulence.

http://www.w3.org/TR/SVG/filters.html (47 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Filter Effects - SVG 1.1 - 20030114

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="450px" height="325px" viewBox="0 0 450 325" version="1.1"
 xmlns="http://www.w3.org/2000/svg">
 <title>Example feTurbulence - Examples of feTurbulence operations</title>
 <desc>Six rectangular areas showing the effects of
 various parameter settings for feTurbulence.</desc>
 <g font-family="Verdana" text-anchor="middle" font-size="10" >
 <defs>
 <filter id="Turb1" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="2"/>
 </filter>
 <filter id="Turb2" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="turbulence" baseFrequency="0.1" numOctaves="2"/>
 </filter>
 <filter id="Turb3" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="turbulence" baseFrequency="0.05" numOctaves="8"/>
 </filter>
 <filter id="Turb4" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="4"/>
 </filter>
 <filter id="Turb5" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="fractalNoise" baseFrequency="0.4" numOctaves="4"/>
 </filter>
 <filter id="Turb6" filterUnits="objectBoundingBox"
 x="0%" y="0%" width="100%" height="100%">
 <feTurbulence type="fractalNoise" baseFrequency="0.1" numOctaves="1"/>
 </filter>
 </defs>
 <rect x="1" y="1" width="448" height="323"
 fill="none" stroke="blue" stroke-width="1" />
 <rect x="25" y="25" width="100" height="75" filter="url(#Turb1)" />
 <text x="75" y="117">type=turbulence</text>
 <text x="75" y="129">baseFrequency=0.05</text>
 <text x="75" y="141">numOctaves=2</text>
 <rect x="175" y="25" width="100" height="75" filter="url(#Turb2)" />
 <text x="225" y="117">type=turbulence</text>
 <text x="225" y="129">baseFrequency=0.1</text>
 <text x="225" y="141">numOctaves=2</text>
 <rect x="325" y="25" width="100" height="75" filter="url(#Turb3)" />
 <text x="375" y="117">type=turbulence</text>
 <text x="375" y="129">baseFrequency=0.05</text>
 <text x="375" y="141">numOctaves=8</text>
 <rect x="25" y="180" width="100" height="75" filter="url(#Turb4)" />
 <text x="75" y="272">type=fractalNoise</text>
 <text x="75" y="284">baseFrequency=0.1</text>
 <text x="75" y="296">numOctaves=4</text>
 <rect x="175" y="180" width="100" height="75" filter="url(#Turb5)" />
 <text x="225" y="272">type=fractalNoise</text>
 <text x="225" y="284">baseFrequency=0.4</text>
 <text x="225" y="296">numOctaves=4</text>
 <rect x="325" y="180" width="100" height="75" filter="url(#Turb6)" />
 <text x="375" y="272">type=fractalNoise</text>
 <text x="375" y="284">baseFrequency=0.1</text>
 <text x="375" y="296">numOctaves=1</text>
 </g>
</svg>

http://www.w3.org/TR/SVG/filters.html (48 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Example feTurbulence

View this example as SVG (SVG-enabled browsers only)

15.25 Filter Module

Elements Attributes Content Model

filter
Core.attrib, XLink.attrib, External.attrib, Style.attrib,
Presentation.attrib, filterUnits, primitiveUnits, x, y,
width, height, filterRes

(Description.class | FilterPrimitive.class
| Animation.class)*

feBlend
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, in2, mode

(Animation.class)*

feColorMatrix
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, type, values

(Animation.class)*

feComponentTransfer
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib

(feFuncR?, feFuncG?, feFuncB?,
feFuncA?)

feComposite
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, in2, operator, k1, k2, k3, k4

(Animation.class)*

feConvolveMatrix
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, order, kernelMatrix, divisor, bias, targetX,
targetY, edgeMode, kernelUnitLength, preserveAlpha

(Animation.class)*

feDiffuseLighting
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, Style.attrib, Paint.attrib, lighting-color,
surfaceScale, diffuseConstant, kernelUnitLength

((feDistantLight | fePointLight |
feSpotLight), (Animation.class)*)

feDisplacementMap
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, in2, scale, xChannelSelector, yChannelSelector

(Animation.class)*

feFlood
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, Style.attrib, Paint.attrib, flood-color, flood-
opacity

(Animation.class)*

feGaussianBlur
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, stdDeviation

(Animation.class)*

feImage
Core.attrib, XLink.attrib, FilterColor.attrib,
FilterPrimitive.attrib, External.attrib, Style.attrib,
Presentation.attrib

(Animation.class)*

feMerge Core.attrib, in (Animation.class)*

feMergeNode Core.attrib, FilterColor.attrib, FilterPrimitive.attrib (feMergeNode)*

feMorphology
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, operator, radius

(Animation.class)*

feOffset
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, dx, dy

(Animation.class)*

feSpecularLighting

Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, Style.attrib, Paint.attrib, lighting-color,
surfaceScale, specularConstant, specularExponent,
kernelUnitLength

((feDistantLight | fePointLight |
feSpotLight), (Animation.class)*)

feTile
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib

(Animation.class)*

feTurbulence
Core.attrib, FilterColor.attrib, FilterPrimitive.attrib,
baseFrequency, numOctaves, seed, stitchTiles, type

(Animation.class)*

feDistantLight Core.attrib, azimuth, elevation (Animation.class)*

fePointLight Core.attrib, x, y, z (Animation.class)*

http://www.w3.org/TR/SVG/filters.html (49 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/images/filters/feTurbulence.svg

Filter Effects - SVG 1.1 - 20030114

feSpotLight
Core.attrib, x, y, z, pointsAtX, pointsAtY, pointsAtZ,
specularExponent, limitingConeAngle

(Animation.class)*

feFuncR
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncG
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncB
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncA
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

15.25.1 Filter Content Sets

The Filter Module defines the Filter.class and FilterPrimitive.class content sets.

Content Set Name Elements in Content Set

Filter.class filter

FilterPrimitive.class
feBlend, feFlood, feColorMatrix, feComponentTransfer, feComposite, feConvolveMatrix,
feDiffuseLighting, feDisplacementMap, feGaussianBlur, feImage, feMerge, feMorphology, feOffset,
feSpecularLighting, feTile, feTurbulence

15.25.2 Filter Attribute Sets

The Filter Module defines the Filter.attrib, FilterColor.attrib, FilterPrimitive.attrib and FilterPrimitiveWithIn.attrib attribute
sets.

Collection Name Attributes in Collection

Filter.attrib filter

FilterColor.attrib color-interpolation-filters

FilterPrimitive.attrib x, y, width, height, result

FilterPrimitiveWithIn.attrib FilterPrimitive.attrib, in

15.26 Basic Filter Module

Elements Attributes Content Model

filter
Core.attrib, XLink.attrib, External.attrib, Style.attrib,
Presentation.attrib, filterUnits, primitiveUnits, x, y,
width, height, filterRes

(Description.class | FilterPrimitive.class
| Animation.class)*

feBlend
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, in2, mode

(Animation.class)*

feColorMatrix
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, type, values

(Animation.class)*

feComponentTransfer Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.attrib
(feFuncR?, feFuncG?, feFuncB?,
feFuncA?)

feComposite
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, in2, operator, k1, k2, k3, k4

(Animation.class)*

feFlood
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, Style.attrib, Paint.attrib, flood-color, flood-opacity

(Animation.class)*

feGaussianBlur
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, stdDeviation

(Animation.class)*

http://www.w3.org/TR/SVG/filters.html (50 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

feImage
Core.attrib, XLinkEmbed.attrib, FilterColor.attrib,
FilterPrimitive.attrib, External.attrib, Style.attrib,
Presentation.attrib

(Animation.class)*

feMerge Core.attrib, in (Animation.class)*

feMergeNode Core.attrib, FilterColor.attrib, FilterPrimitive.attrib (feMergeNode)*

feOffset
Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.
attrib, dx, dy

(Animation.class)*

feTile Core.attrib, FilterColor.attrib, FilterPrimitiveWithIn.attrib (Animation.class)*

feFuncR
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncG
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncB
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

feFuncA
Core.attrib, type, tableValues, slope, intercept,
amplitude, exponent, offset

(Animation.class)*

15.26.1 Basic Filter Content Sets

The Basic Filter Module defines the Filter.class and FilterPrimitive.class content sets.

Content Set Name Elements in Content Set

Filter.class filter

FilterPrimitive.class
feBlend, feFlood, feColorMatrix, feComponentTransfer, feComposite, feGaussianBlur, feImage,
feMerge, feOffset, feTile

15.26.2 Basic Filter Attribute Sets

The Basic Filter Module defines the Filter.attrib, FilterColor.attrib, FilterPrimitive.attrib and FilterPrimitiveWithIn.attrib
attribute sets.

Collection Name Attributes in Collection

Filter.attrib filter

FilterColor.attrib color-interpolation-filters

FilterPrimitive.attrib x, y, width, height, result

FilterPrimitiveWithIn.attrib FilterPrimitive.attrib, in

15.27 DOM interfaces

The following interfaces are defined below: SVGFilterElement, SVGFilterPrimitiveStandardAttributes,
SVGFEBlendElement, SVGFEColorMatrixElement, SVGFEComponentTransferElement,
SVGComponentTransferFunctionElement, SVGFEFuncRElement, SVGFEFuncGElement, SVGFEFuncBElement,
SVGFEFuncAElement, SVGFECompositeElement, SVGFEConvolveMatrixElement, SVGFEDiffuseLightingElement,
SVGFEDistantLightElement, SVGFEPointLightElement, SVGFESpotLightElement, SVGFEDisplacementMapElement,
SVGFEFloodElement, SVGFEGaussianBlurElement, SVGFEImageElement, SVGFEMergeElement,
SVGFEMergeNodeElement, SVGFEMorphologyElement, SVGFEOffsetElement, SVGFESpecularLightingElement,
SVGFETileElement, SVGFETurbulenceElement.

Interface SVGFilterElement

The SVGFilterElement interface corresponds to the 'filter' element.

http://www.w3.org/TR/SVG/filters.html (51 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

IDL Definition

interface SVGFilterElement :
 SVGElement,
 SVGURIReference,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGUnitTypes {
 readonly attribute SVGAnimatedEnumeration filterUnits;
 readonly attribute SVGAnimatedEnumeration primitiveUnits;
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 readonly attribute SVGAnimatedInteger filterResX;
 readonly attribute SVGAnimatedInteger filterResY;
 void setFilterRes (in unsigned long filterResX, in unsigned long filterResY);
};

Attributes

readonly SVGAnimatedEnumeration filterUnits
Corresponds to attribute filterUnits on the given 'filter' element. Takes one of the constants defined in
SVGUnitTypes.

readonly SVGAnimatedEnumeration primitiveUnits
Corresponds to attribute primitiveUnits on the given 'filter' element. Takes one of the constants defined in
SVGUnitTypes.

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'filter' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'filter' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'filter' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'filter' element.

readonly SVGAnimatedInteger filterResX
Corresponds to attribute filterRes on the given 'filter' element. Contains the X component of attribute
filterRes.

readonly SVGAnimatedInteger filterResY
Corresponds to attribute filterRes on the given 'filter' element. Contains the Y component (possibly
computed automatically) of attribute filterRes.

Methods
setFilterRes

Sets the values for attribute filterRes.
Parameters

in unsigned long filterResX The X component of attribute filterRes.

in unsigned long filterResY The Y component of attribute filterRes.
No Return Value
No Exceptions

Interface SVGFilterPrimitiveStandardAttributes

This interface defines the set of DOM attributes that are common across the filter interfaces.

http://www.w3.org/TR/SVG/filters.html (52 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

IDL Definition

interface SVGFilterPrimitiveStandardAttributes : SVGStylable {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
 readonly attribute SVGAnimatedLength width;
 readonly attribute SVGAnimatedLength height;
 readonly attribute SVGAnimatedString result;
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given element.

readonly SVGAnimatedString result
Corresponds to attribute result on the given element.

Interface SVGFEBlendElement

The SVGFEBlendElement interface corresponds to the 'feBlend' element.

IDL Definition

interface SVGFEBlendElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Blend Mode Types
 const unsigned short SVG_FEBLEND_MODE_UNKNOWN = 0;
 const unsigned short SVG_FEBLEND_MODE_NORMAL = 1;
 const unsigned short SVG_FEBLEND_MODE_MULTIPLY = 2;
 const unsigned short SVG_FEBLEND_MODE_SCREEN = 3;
 const unsigned short SVG_FEBLEND_MODE_DARKEN = 4;
 const unsigned short SVG_FEBLEND_MODE_LIGHTEN = 5;
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedString in2;
 readonly attribute SVGAnimatedEnumeration mode;
};

Definition group Blend Mode Types

Defined constants
SVG_FEBLEND_MODE_UNKNOWN The type is not one of predefined types. It is invalid to attempt to

define a new value of this type or to attempt to switch an existing
value to this type.

SVG_FEBLEND_MODE_NORMAL Corresponds to value normal.

SVG_FEBLEND_MODE_MULTIPLY Corresponds to value multiply.

SVG_FEBLEND_MODE_SCREEN Corresponds to value screen.

SVG_FEBLEND_MODE_DARKEN Corresponds to value darken.

http://www.w3.org/TR/SVG/filters.html (53 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

SVG_FEBLEND_MODE_LIGHTEN Corresponds to value lighten.
Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feBlend' element.

readonly SVGAnimatedString in2
Corresponds to attribute in2 on the given 'feBlend' element.

readonly SVGAnimatedEnumeration mode
Corresponds to attribute mode on the given 'feBlend' element. Takes one of the Blend Mode Types.

Interface SVGFEColorMatrixElement

The SVGFEColorMatrixElement interface corresponds to the 'feColorMatrix' element.

IDL Definition

interface SVGFEColorMatrixElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Color Matrix Types
 const unsigned short SVG_FECOLORMATRIX_TYPE_UNKNOWN = 0;
 const unsigned short SVG_FECOLORMATRIX_TYPE_MATRIX = 1;
 const unsigned short SVG_FECOLORMATRIX_TYPE_SATURATE = 2;
 const unsigned short SVG_FECOLORMATRIX_TYPE_HUEROTATE = 3;
 const unsigned short SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA = 4;
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedEnumeration type;
 readonly attribute SVGAnimatedNumberList values;
};

Definition group Color Matrix Types

Defined constants
SVG_FECOLORMATRIX_TYPE_UNKNOWN The type is not one of predefined types. It is

invalid to attempt to define a new value of this
type or to attempt to switch an existing value to
this type.

SVG_FECOLORMATRIX_TYPE_MATRIX Corresponds to value matrix.

SVG_FECOLORMATRIX_TYPE_SATURATE Corresponds to value saturate.

SVG_FECOLORMATRIX_TYPE_HUEROTATE Corresponds to value hueRotate.

SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA Corresponds to value luminanceToAlpha.
Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feColorMatrix' element.

readonly SVGAnimatedEnumeration type
Corresponds to attribute type on the given 'feColorMatrix' element. Takes one of the Color Matrix Types.

readonly SVGAnimatedNumberList values
Corresponds to attribute values on the given 'feColorMatrix' element.

Provides access to the contents of the values attribute.

Interface SVGFEComponentTransferElement

The SVGFEComponentTransferElement interface corresponds to the 'feComponentTransfer' element.

http://www.w3.org/TR/SVG/filters.html (54 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

IDL Definition

interface SVGFEComponentTransferElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feComponentTransfer' element.

Interface SVGComponentTransferFunctionElement

This interface defines a base interface used by the component transfer function interfaces.

IDL Definition

interface SVGComponentTransferFunctionElement : SVGElement {
 // Component Transfer Types
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN = 0;
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY = 1;
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_TABLE = 2;
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE = 3;
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_LINEAR = 4;
 const unsigned short SVG_FECOMPONENTTRANSFER_TYPE_GAMMA = 5;
 readonly attribute SVGAnimatedEnumeration type;
 readonly attribute SVGAnimatedNumberList tableValues;
 readonly attribute SVGAnimatedNumber slope;
 readonly attribute SVGAnimatedNumber intercept;
 readonly attribute SVGAnimatedNumber amplitude;
 readonly attribute SVGAnimatedNumber exponent;
 readonly attribute SVGAnimatedNumber offset;
};

Definition group Component Transfer Types

Defined constants
SVG_FECOMPONENTTRANSFER_TYPE_UNKNOWN The type is not one of predefined types. It is

invalid to attempt to define a new value of this
type or to attempt to switch an existing value to
this type.

SVG_FECOMPONENTTRANSFER_TYPE_IDENTITY Corresponds to value identity.

SVG_FECOMPONENTTRANSFER_TYPE_TABLE Corresponds to value table.

SVG_FECOMPONENTTRANSFER_TYPE_DISCRETE Corresponds to value discrete.

SVG_FECOMPONENTTRANSFER_TYPE_LINEAR Corresponds to value linear.

SVG_FECOMPONENTTRANSFER_TYPE_GAMMA Corresponds to value gamma.
Attributes

readonly SVGAnimatedEnumeration type
Corresponds to attribute type on the given element. Takes one of the Component Transfer Types.

readonly SVGAnimatedNumberList tableValues
Corresponds to attribute tableValues on the given element.

http://www.w3.org/TR/SVG/filters.html (55 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

readonly SVGAnimatedNumber slope
Corresponds to attribute slope on the given element.

readonly SVGAnimatedNumber intercept
Corresponds to attribute intercept on the given element.

readonly SVGAnimatedNumber amplitude
Corresponds to attribute amplitude on the given element.

readonly SVGAnimatedNumber exponent
Corresponds to attribute exponent on the given element.

readonly SVGAnimatedNumber offset
Corresponds to attribute offset on the given element.

Interface SVGFEFuncRElement

The SVGFEFuncRElement interface corresponds to the 'feFuncR' element.

IDL Definition

interface SVGFEFuncRElement : SVGComponentTransferFunctionElement {};

Interface SVGFEFuncGElement

The SVGFEFuncGElement interface corresponds to the 'feFuncG' element.

IDL Definition

interface SVGFEFuncGElement : SVGComponentTransferFunctionElement {};

Interface SVGFEFuncBElement

The SVGFEFuncBElement interface corresponds to the 'feFuncB' element.

IDL Definition

interface SVGFEFuncBElement : SVGComponentTransferFunctionElement {};

Interface SVGFEFuncAElement

The SVGFEFuncAElement interface corresponds to the 'feFuncA' element.

IDL Definition

http://www.w3.org/TR/SVG/filters.html (56 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

interface SVGFEFuncAElement : SVGComponentTransferFunctionElement {};

Interface SVGFECompositeElement

The SVGFECompositeElement interface corresponds to the 'feComposite' element.

IDL Definition

interface SVGFECompositeElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Composite Operators
 const unsigned short SVG_FECOMPOSITE_OPERATOR_UNKNOWN = 0;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_OVER = 1;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_IN = 2;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_OUT = 3;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_ATOP = 4;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_XOR = 5;
 const unsigned short SVG_FECOMPOSITE_OPERATOR_ARITHMETIC = 6;
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedString in2;
 readonly attribute SVGAnimatedEnumeration operator;
 readonly attribute SVGAnimatedNumber k1;
 readonly attribute SVGAnimatedNumber k2;
 readonly attribute SVGAnimatedNumber k3;
 readonly attribute SVGAnimatedNumber k4;
};

Definition group Composite Operators

Defined constants
SVG_FECOMPOSITE_OPERATOR_UNKNOWN The type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_FECOMPOSITE_OPERATOR_OVER Corresponds to value over.

SVG_FECOMPOSITE_OPERATOR_IN Corresponds to value in.

SVG_FECOMPOSITE_OPERATOR_OUT Corresponds to value out.

SVG_FECOMPOSITE_OPERATOR_ATOP Corresponds to value atop.

SVG_FECOMPOSITE_OPERATOR_XOR Corresponds to value xor.

SVG_FECOMPOSITE_OPERATOR_ARITHMETIC Corresponds to value arithmetic.
Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feComposite' element.

readonly SVGAnimatedString in2
Corresponds to attribute in2 on the given 'feComposite' element.

readonly SVGAnimatedEnumeration operator
Corresponds to attribute operator on the given 'feComposite' element. Takes one of the Composite
Operators.

readonly SVGAnimatedNumber k1
Corresponds to attribute k1 on the given 'feComposite' element.

readonly SVGAnimatedNumber k2

http://www.w3.org/TR/SVG/filters.html (57 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Corresponds to attribute k2 on the given 'feComposite' element.
readonly SVGAnimatedNumber k3

Corresponds to attribute k3 on the given 'feComposite' element.
readonly SVGAnimatedNumber k4

Corresponds to attribute k4 on the given 'feComposite' element.

Interface SVGFEConvolveMatrixElement

The SVGFEConvolveMatrixElement interface corresponds to the 'feConvolveMatrix' element.

IDL Definition

interface SVGFEConvolveMatrixElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Edge Mode Values
 const unsigned short SVG_EDGEMODE_UNKNOWN = 0;
 const unsigned short SVG_EDGEMODE_DUPLICATE = 1;
 const unsigned short SVG_EDGEMODE_WRAP = 2;
 const unsigned short SVG_EDGEMODE_NONE = 3;
 readonly attribute SVGAnimatedInteger orderX;
 readonly attribute SVGAnimatedInteger orderY;
 readonly attribute SVGAnimatedNumberList kernelMatrix;
 readonly attribute SVGAnimatedNumber divisor;
 readonly attribute SVGAnimatedNumber bias;
 readonly attribute SVGAnimatedInteger targetX;
 readonly attribute SVGAnimatedInteger targetY;
 readonly attribute SVGAnimatedEnumeration edgeMode;
 readonly attribute SVGAnimatedNumber kernelUnitLengthX;
 readonly attribute SVGAnimatedNumber kernelUnitLengthY;
 readonly attribute SVGAnimatedBoolean preserveAlpha;
};

Definition group Edge Mode Values

Defined constants
SVG_EDGEMODE_UNKNOWN The type is not one of predefined types. It is invalid to attempt to define

a new value of this type or to attempt to switch an existing value to this
type.

SVG_EDGEMODE_DUPLICATE Corresponds to value duplicate.

SVG_EDGEMODE_WRAP Corresponds to value wrap.

SVG_EDGEMODE_NONE Corresponds to value none.
Attributes

readonly SVGAnimatedInteger orderX
Corresponds to attribute order on the given 'feConvolveMatrix' element.

readonly SVGAnimatedInteger orderY
Corresponds to attribute order on the given 'feConvolveMatrix' element.

readonly SVGAnimatedNumberList kernelMatrix
Corresponds to attribute kernelMatrix on the given element.

readonly SVGAnimatedNumber divisor
Corresponds to attribute divisor on the given 'feConvolveMatrix' element.

readonly SVGAnimatedNumber bias
Corresponds to attribute bias on the given 'feConvolveMatrix' element.

readonly SVGAnimatedInteger targetX
Corresponds to attribute targetX on the given 'feConvolveMatrix' element.

readonly SVGAnimatedInteger targetY
Corresponds to attribute targetY on the given 'feConvolveMatrix' element.

http://www.w3.org/TR/SVG/filters.html (58 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

readonly SVGAnimatedEnumeration edgeMode
Corresponds to attribute edgeMode on the given 'feConvolveMatrix' element. Takes one of the Edge Mode
Types.

readonly SVGAnimatedNumber kernelUnitLengthX
Corresponds to attribute kernelUnitLength on the given 'feConvolveMatrix' element.

readonly SVGAnimatedNumber kernelUnitLengthY
Corresponds to attribute kernelUnitLength on the given 'feConvolveMatrix' element.

readonly SVGAnimatedBoolean preserveAlpha
Corresponds to attribute preserveAlpha on the given 'feConvolveMatrix' element.

Interface SVGFEDiffuseLightingElement

The SVGFEDiffuseLightingElement interface corresponds to the 'feDiffuseLighting' element.

IDL Definition

interface SVGFEDiffuseLightingElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedNumber surfaceScale;
 readonly attribute SVGAnimatedNumber diffuseConstant;
 readonly attribute SVGAnimatedNumber kernelUnitLengthX;
 readonly attribute SVGAnimatedNumber kernelUnitLengthY;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feDiffuseLighting' element.

readonly SVGAnimatedNumber surfaceScale
Corresponds to attribute surfaceScale on the given 'feDiffuseLighting' element.

readonly SVGAnimatedNumber diffuseConstant
Corresponds to attribute diffuseConstant on the given 'feDiffuseLighting' element.

readonly SVGAnimatedNumber kernelUnitLengthX
Corresponds to attribute kernelUnitLength on the given 'feDiffuseLighting' element.

readonly SVGAnimatedNumber kernelUnitLengthY
Corresponds to attribute kernelUnitLength on the given 'feDiffuseLighting' element.

Interface SVGFEDistantLightElement

The SVGFEDistantLightElement interface corresponds to the 'feDistantLight' element.

IDL Definition

interface SVGFEDistantLightElement : SVGElement {
 readonly attribute SVGAnimatedNumber azimuth;
 readonly attribute SVGAnimatedNumber elevation;
};

Attributes

http://www.w3.org/TR/SVG/filters.html (59 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

readonly SVGAnimatedNumber azimuth
Corresponds to attribute azimuth on the given 'feDistantLight' element.

readonly SVGAnimatedNumber elevation
Corresponds to attribute elevation on the given 'feDistantLight' element.

Interface SVGFEPointLightElement

The SVGFEPointLightElement interface corresponds to the 'fePointLight' element.

IDL Definition

interface SVGFEPointLightElement : SVGElement {
 readonly attribute SVGAnimatedNumber x;
 readonly attribute SVGAnimatedNumber y;
 readonly attribute SVGAnimatedNumber z;
};

Attributes

readonly SVGAnimatedNumber x
Corresponds to attribute x on the given 'fePointLight' element.

readonly SVGAnimatedNumber y
Corresponds to attribute y on the given 'fePointLight' element.

readonly SVGAnimatedNumber z
Corresponds to attribute z on the given 'fePointLight' element.

Interface SVGFESpotLightElement

The SVGFESpotLightElement interface corresponds to the 'feSpotLight' element.

IDL Definition

interface SVGFESpotLightElement : SVGElement {
 readonly attribute SVGAnimatedNumber x;
 readonly attribute SVGAnimatedNumber y;
 readonly attribute SVGAnimatedNumber z;
 readonly attribute SVGAnimatedNumber pointsAtX;
 readonly attribute SVGAnimatedNumber pointsAtY;
 readonly attribute SVGAnimatedNumber pointsAtZ;
 readonly attribute SVGAnimatedNumber specularExponent;
 readonly attribute SVGAnimatedNumber limitingConeAngle;
};

Attributes

readonly SVGAnimatedNumber x
Corresponds to attribute x on the given 'feSpotLight' element.

readonly SVGAnimatedNumber y
Corresponds to attribute y on the given 'feSpotLight' element.

readonly SVGAnimatedNumber z
Corresponds to attribute z on the given 'feSpotLight' element.

readonly SVGAnimatedNumber pointsAtX

http://www.w3.org/TR/SVG/filters.html (60 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Corresponds to attribute pointsAtX on the given 'feSpotLight' element.
readonly SVGAnimatedNumber pointsAtY

Corresponds to attribute pointsAtY on the given 'feSpotLight' element.
readonly SVGAnimatedNumber pointsAtZ

Corresponds to attribute pointsAtZ on the given 'feSpotLight' element.
readonly SVGAnimatedNumber specularExponent

Corresponds to attribute specularExponent on the given 'feSpotLight' element.
readonly SVGAnimatedNumber limitingConeAngle

Corresponds to attribute limitingConeAngle on the given 'feSpotLight' element.

Interface SVGFEDisplacementMapElement

The SVGFEDisplacementMapElement interface corresponds to the 'feDisplacementMap' element.

IDL Definition

interface SVGFEDisplacementMapElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Channel Selectors
 const unsigned short SVG_CHANNEL_UNKNOWN = 0;
 const unsigned short SVG_CHANNEL_R = 1;
 const unsigned short SVG_CHANNEL_G = 2;
 const unsigned short SVG_CHANNEL_B = 3;
 const unsigned short SVG_CHANNEL_A = 4;
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedString in2;
 readonly attribute SVGAnimatedNumber scale;
 readonly attribute SVGAnimatedEnumeration xChannelSelector;
 readonly attribute SVGAnimatedEnumeration yChannelSelector;
};

Definition group Channel Selectors

Defined constants
SVG_CHANNEL_UNKNOWN The type is not one of predefined types. It is invalid to attempt to define a

new value of this type or to attempt to switch an existing value to this type.

SVG_CHANNEL_R Corresponds to value R.

SVG_CHANNEL_G Corresponds to value G.

SVG_CHANNEL_B Corresponds to value B.

SVG_CHANNEL_A Corresponds to value A.
Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feDisplacementMap' element.

readonly SVGAnimatedString in2
Corresponds to attribute in2 on the given 'feDisplacementMap' element.

readonly SVGAnimatedNumber scale
Corresponds to attribute scale on the given 'feDisplacementMap' element.

readonly SVGAnimatedEnumeration xChannelSelector
Corresponds to attribute xChannelSelector on the given 'feDisplacementMap' element. Takes one of the
Channel Selectors.

readonly SVGAnimatedEnumeration yChannelSelector
Corresponds to attribute yChannelSelector on the given 'feDisplacementMap' element. Takes one of the
Channel Selectors.

http://www.w3.org/TR/SVG/filters.html (61 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Interface SVGFEFloodElement

The SVGFEFloodElement interface corresponds to the 'feFlood' element.

IDL Definition

interface SVGFEFloodElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feFlood' element.

Interface SVGFEGaussianBlurElement

The SVGFEGaussianBlurElement interface corresponds to the 'feGaussianBlur' element.

IDL Definition

interface SVGFEGaussianBlurElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedNumber stdDeviationX;
 readonly attribute SVGAnimatedNumber stdDeviationY;
 void setStdDeviation (in float stdDeviationX, in float stdDeviationY);
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feGaussianBlur' element.

readonly SVGAnimatedNumber stdDeviationX
Corresponds to attribute stdDeviation on the given 'feGaussianBlur' element. Contains the X component of
attribute stdDeviation.

readonly SVGAnimatedNumber stdDeviationY
Corresponds to attribute stdDeviation on the given 'feGaussianBlur' element. Contains the Y component
(possibly computed automatically) of attribute stdDeviation.

Methods
setStdDeviation

Sets the values for attribute stdDeviation.
Parameters

in float stdDeviationX The X component of attribute stdDeviation.

in float stdDeviationY The Y component of attribute stdDeviation.
No Return Value
No Exceptions

http://www.w3.org/TR/SVG/filters.html (62 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Interface SVGFEImageElement

The SVGFEImageElement interface corresponds to the 'feImage' element.

IDL Definition

interface SVGFEImageElement :
 SVGElement,
 SVGURIReference,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGFilterPrimitiveStandardAttributes {
readonly attribute SVGAnimatedPreserveAspectRatio preserveAspectRatio;
};

Attributes

readonly SVGAnimatedPreserveAspectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGFEMergeElement

The SVGFEMergeElement interface corresponds to the 'feMerge' element.

IDL Definition

interface SVGFEMergeElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {};

Interface SVGFEMergeNodeElement

The SVGFEMergeNodeElement interface corresponds to the 'feMergeNode' element.

IDL Definition

interface SVGFEMergeNodeElement : SVGElement {
 readonly attribute SVGAnimatedString in1;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feMergeNode' element.

http://www.w3.org/TR/SVG/filters.html (63 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Interface SVGFEMorphologyElement

The SVGFEMorphologyElement interface corresponds to the 'feMorphology' element.

IDL Definition

interface SVGFEMorphologyElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Morphology Operators
 const unsigned short SVG_MORPHOLOGY_OPERATOR_UNKNOWN = 0;
 const unsigned short SVG_MORPHOLOGY_OPERATOR_ERODE = 1;
 const unsigned short SVG_MORPHOLOGY_OPERATOR_DILATE = 2;
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedEnumeration operator;
 readonly attribute SVGAnimatedNumber radiusX;
 readonly attribute SVGAnimatedNumber radiusY;
};

Definition group Morphology Operators

Defined constants
SVG_MORPHOLOGY_OPERATOR_UNKNOWN The type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to attempt
to switch an existing value to this type.

SVG_MORPHOLOGY_OPERATOR_ERODE Corresponds to value erode.

SVG_MORPHOLOGY_OPERATOR_DILATE Corresponds to value dilate.
Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feMorphology' element.

readonly SVGAnimatedEnumeration operator
Corresponds to attribute operator on the given 'feMorphology' element. Takes one of the Morphology
Operators.

readonly SVGAnimatedNumber radiusX
Corresponds to attribute radius on the given 'feMorphology' element.

readonly SVGAnimatedNumber radiusY
Corresponds to attribute radius on the given 'feMorphology' element.

Interface SVGFEOffsetElement

The SVGFEOffsetElement interface corresponds to the 'feOffset' element.

IDL Definition

interface SVGFEOffsetElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedNumber dx;
 readonly attribute SVGAnimatedNumber dy;
};

http://www.w3.org/TR/SVG/filters.html (64 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Attributes
readonly SVGAnimatedString in1

Corresponds to attribute in on the given 'feOffset' element.
readonly SVGAnimatedNumber dx

Corresponds to attribute dx on the given 'feOffset' element.
readonly SVGAnimatedNumber dy

Corresponds to attribute dy on the given 'feOffset' element.

Interface SVGFESpecularLightingElement

The SVGFESpecularLightingElement interface corresponds to the 'feSpecularLighting' element.

IDL Definition

interface SVGFESpecularLightingElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
 readonly attribute SVGAnimatedNumber surfaceScale;
 readonly attribute SVGAnimatedNumber specularConstant;
 readonly attribute SVGAnimatedNumber specularExponent;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feSpecularLighting' element.

readonly SVGAnimatedNumber surfaceScale
Corresponds to attribute surfaceScale on the given 'feSpecularLighting' element.

readonly SVGAnimatedNumber specularConstant
Corresponds to attribute specularConstant on the given 'feSpecularLighting' element.

readonly SVGAnimatedNumber specularExponent
Corresponds to attribute specularExponent on the given 'feSpecularLighting' element.

Interface SVGFETileElement

The SVGFETileElement interface corresponds to the 'feTile' element.

IDL Definition

interface SVGFETileElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 readonly attribute SVGAnimatedString in1;
};

Attributes

readonly SVGAnimatedString in1
Corresponds to attribute in on the given 'feTile' element.

http://www.w3.org/TR/SVG/filters.html (65 of 66)4/2/07 7:24 PM

Filter Effects - SVG 1.1 - 20030114

Interface SVGFETurbulenceElement

The SVGFETurbulenceElement interface corresponds to the 'feTurbulence' element.

IDL Definition

interface SVGFETurbulenceElement :
 SVGElement,
 SVGFilterPrimitiveStandardAttributes {
 // Turbulence Types
 const unsigned short SVG_TURBULENCE_TYPE_UNKNOWN = 0;
 const unsigned short SVG_TURBULENCE_TYPE_FRACTALNOISE = 1;
 const unsigned short SVG_TURBULENCE_TYPE_TURBULENCE = 2;
 // Stitch Options
 const unsigned short SVG_STITCHTYPE_UNKNOWN = 0;
 const unsigned short SVG_STITCHTYPE_STITCH = 1;
 const unsigned short SVG_STITCHTYPE_NOSTITCH = 2;
 readonly attribute SVGAnimatedNumber baseFrequencyX;
 readonly attribute SVGAnimatedNumber baseFrequencyY;
 readonly attribute SVGAnimatedInteger numOctaves;
 readonly attribute SVGAnimatedNumber seed;
 readonly attribute SVGAnimatedEnumeration stitchTiles;
 readonly attribute SVGAnimatedEnumeration type;
};

Definition group Turbulence Types

Defined constants
SVG_TURBULENCE_TYPE_UNKNOWN The type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to attempt to
switch an existing value to this type.

SVG_TURBULENCE_TYPE_FRACTALNOISE Corresponds to value fractalNoise.

SVG_TURBULENCE_TYPE_TURBULENCE Corresponds to value turbulence.
Definition group Stitch Options

Defined constants
SVG_STITCHTYPE_UNKNOWN The type is not one of predefined types. It is invalid to attempt to define

a new value of this type or to attempt to switch an existing value to this
type.

SVG_STITCHTYPE_STITCH Corresponds to value stitch.

SVG_STITCHTYPE_NOSTITCH Corresponds to value noStitch.
Attributes

readonly SVGAnimatedNumber baseFrequencyX
Corresponds to attribute baseFrequencyX on the given 'feTurbulence' element.

readonly SVGAnimatedNumber baseFrequencyY
Corresponds to attribute baseFrequencyY on the given 'feTurbulence' element.

readonly SVGAnimatedInteger numOctaves
Corresponds to attribute numOctaves on the given 'feTurbulence' element.

readonly SVGAnimatedNumber seed
Corresponds to attribute seed on the given 'feTurbulence' element.

readonly SVGAnimatedEnumeration stitchTiles
Corresponds to attribute stitchTiles on the given 'feTurbulence' element. Takes one of the Stitching Options.

readonly SVGAnimatedEnumeration type
Corresponds to attribute type on the given 'feTurbulence' element. Takes one of the Turbulence Types.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/filters.html (66 of 66)4/2/07 7:24 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Interactivity - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

16 Interactivity

Contents

● 16.1 Introduction
● 16.2 Complete list of supported events
● 16.3 User interface events
● 16.4 Pointer events
● 16.5 Processing order for user interface events
● 16.6 The 'pointer-events' property
● 16.7 Magnification and panning
● 16.8 Cursors

❍ 16.8.1 Introduction to cursors
❍ 16.8.2 The 'cursor' property
❍ 16.8.3 The 'cursor' element

● 16.9 Document Events Attribute Module
● 16.10 Graphical Events Attribute Module
● 16.11 Animation Events Attribute Module
● 16.12 Cursor Module
● 16.13 DOM interfaces

16.1 Introduction

SVG content can be interactive (i.e., responsive to user-initiated events) by utilizing the following
features in the SVG language:

● User-initiated actions such as button presses on the pointing device (e.g., a mouse) can cause
animations or scripts to execute.

● The user can initiate hyperlinks to new Web pages (see Links out of SVG content: the 'a'
element) by actions such as mouse clicks when the pointing device is positioned over
particular graphics elements.

● In many cases, depending on the value of the zoomAndPan attribute on the 'svg' element and
on the characteristics of the user agent, users are able to zoom into and pan around SVG
content.

http://www.w3.org/TR/SVG/interact.html (1 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Interactivity - SVG 1.1 - 20030114

● User movements of the pointing device can cause changes to the cursor that shows the
current position of the pointing device.

This chapter describes:

● information about events, including under which circumstances events are triggered
● how to indicate whether a given document can be zoomed and panned
● how to specify which cursors to use

Related information can be found in other chapters:

● hyperlinks are discussed in Links
● scripting and event attributes are discussed in Scripting
● SVG's relationship to DOM2 events is discussed in Relationship with DOM2 event model
● animation is discussed in Animation

16.2 Complete list of supported events

The following aspects of SVG are affected by events:

● Using SVG Document Object Model (DOM), a script can register DOM2 event listeners so that
script can be invoked when a given event occurs.

● SVG includes event attributes on selected elements which define script that can be executed
when a given event occurs in association with the given element.

● SVG's animation elements can be defined to begin or end based on events.

The following table lists all of the events which are recognized and supported in SVG. The Event
name in the first column is the name to use within SVG's animation elements to define the events
which can start or end animations. The DOM2 name in the third column is the name to use when
defining DOM2 event listeners. The Event attribute name in the fifth column contains the
corresponding name of the event attributes that can be attached to elements in the SVG language.

Event name Description DOM2 name
DOM2

category

Event
attribute

name
focusin Occurs when an

element receives
focus, such as
when a 'text'
becomes
selected.

DOMFocusIn UIEvent onfocusin

focusout Occurs when an
element loses
focus, such as
when a 'text'
becomes
unselected.

DOMFocusOut UIEvent onfocusout

http://www.w3.org/TR/SVG/interact.html (2 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/SVG/svgdom.html#RelationShipWithDOM2Events
http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Registration-interfaces
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-Registration-interfaces
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-UIEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-UIEvent

Interactivity - SVG 1.1 - 20030114

activate Occurs when an
element is
activated, for
instance, thru a
mouse click or a
keypress. A
numerical
argument is
provided to give
an indication of
the type of
activation that
occurs: 1 for a
simple activation
(e.g. a simple
click or Enter), 2
for
hyperactivation
(for instance a
double click or
Shift Enter).

DOMActivate UIEvent onactivate

click Occurs when the
pointing device
button is clicked
over an element.
A click is defined
as a mousedown
and mouseup
over the same
screen location.
The sequence of
these events is:
mousedown,
mouseup,
click. If
multiple clicks
occur at the
same screen
location, the
sequence
repeats with the
detail attribute
incrementing
with each
repetition.

(same) MouseEvent onclick

mousedown Occurs when the
pointing device
button is pressed
over an element.

(same) MouseEvent onmousedown

http://www.w3.org/TR/SVG/interact.html (3 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-UIEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent

Interactivity - SVG 1.1 - 20030114

mouseup Occurs when the
pointing device
button is
released over an
element.

(same) MouseEvent onmouseup

mouseover Occurs when the
pointing device is
moved onto an
element.

(same) MouseEvent onmouseover

mousemove Occurs when the
pointing device is
moved while it is
over an element.

(same) MouseEvent onmousemove

mouseout Occurs when the
pointing device is
moved away
from an element.

(same) MouseEvent onmouseout

DOMSubtreeModified This is a general
event for
notification of all
changes to the
document. It can
be used instead
of the more
specific events
listed below.
(The normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

DOMNodeInserted Fired when a
node has been
added as a child
of another node.
(The normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

http://www.w3.org/TR/SVG/interact.html (4 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MouseEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent

Interactivity - SVG 1.1 - 20030114

DOMNodeRemoved Fired when a
node is being
removed from
another node.
(The normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

DOMNodeRemovedFromDocument Fired when a
node is being
removed from a
document, either
through direct
removal of the
Node or removal
of a subtree in
which it is
contained. (The
normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

DOMNodeInsertedIntoDocument Fired when a
node is being
inserted into a
document, either
through direct
insertion of the
Node or insertion
of a subtree in
which it is
contained. (The
normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

http://www.w3.org/TR/SVG/interact.html (5 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent

Interactivity - SVG 1.1 - 20030114

DOMAttrModified Fired after an
attribute has
been modified on
a node. (The
normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

DOMCharacterDataModified Fired after
CharacterData
within a node
has been
modified but the
node itself has
not been inserted
or deleted. (The
normative
definition of this
event is the
description in the
DOM2
specification.)

(same) MutationEvent none

SVGLoad The event is
triggered at the
point at which
the user agent
has fully parsed
the element and
its descendants
and is ready to
act appropriately
upon that
element, such as
being ready to
render the
element to the
target device.
Referenced
external
resources that
are required
must be loaded,
parsed and
ready to render
before the event
is triggered.
Optional external
resources are
not required to

(same) none onload

http://www.w3.org/TR/SVG/interact.html (6 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-MutationEvent

Interactivity - SVG 1.1 - 20030114

be ready for the
event to be
triggered.

SVGUnload Only applicable
to outermost
'svg' elements.
The unload event
occurs when the
DOM
implementation
removes a
document from a
window or frame.

(same) none onunload

SVGAbort The abort event
occurs when
page loading is
stopped before
an element has
been allowed to
load completely.

(same) none onabort

SVGError The error event
occurs when an
element does not
load properly or
when an error
occurs during
script execution.

(same) none onerror

SVGResize Occurs when a
document view is
being resized.
This event is only
applicable to
outermost 'svg'
elements and is
dispatched after
the resize
operation has
taken place. The
target of the
event is the 'svg'
element.

(same) none onresize

http://www.w3.org/TR/SVG/interact.html (7 of 18)4/2/07 7:25 PM

Interactivity - SVG 1.1 - 20030114

SVGScroll Occurs when a
document view is
being shifted
along the X or Y
or both axis,
either through a
direct user
interaction or any
change on the
'currentTranslate'
property
available on
SVGSVGElement
interface. This
event is only
applicable to
outermost 'svg'
elements and is
dispatched after
the shift
modification has
taken place. The
target of the
event is the 'svg'
element.

(same) none onscroll

SVGZoom Occurs when the
zoom level of a
document view is
being changed,
either through a
direct user
interaction or any
change to the
'currentScale'
property
available on
SVGSVGElement
interface. This
event is only
applicable to
outermost 'svg'
elements and is
dispatched after
the zoom level
modification has
taken place. The
target of the
event is the 'svg'
element.

none none onzoom

http://www.w3.org/TR/SVG/interact.html (8 of 18)4/2/07 7:25 PM

Interactivity - SVG 1.1 - 20030114

beginEvent Occurs when an
animation
element begins.
For details, see
the description of
Interface
TimeEvent in the
SMIL Animation
specification.

none none onbegin

endEvent Occurs when an
animation
element ends.
For details, see
the description of
Interface
TimeEvent in the
SMIL Animation
specification.

none none onend

repeatEvent Occurs when an
animation
element repeats.
It is raised each
time the element
repeats, after the
first iteration. For
details, see the
description of
Interface
TimeEvent in the
SMIL Animation
specification.

none none onrepeat

As in DOM2 Key events, the SVG specification does not provide a key event set. An event set
designed for use with keyboard input devices will be included in a later version of the DOM and SVG
specifications.

A SVGLoad event is dispatched only to the element to which the event applies; it is not dispatched
to its ancestors. For example, if an 'image' element and its parent 'g' element both have event
listeners for SVGLoad events, when the 'image' element has been loaded, only its event listener will
be invoked. (The 'g' element's event listener will indeed get invoked, but the invocation will happen
when the 'g' itself has been loaded.)

Details on the parameters passed to event listeners for the event types from DOM2 can be found in
the DOM2 specification. For other event types, the parameters passed to event listeners are
described elsewhere in this specification.

16.3 User interface events

On user agents which support interactivity, it is common for authors to define SVG documents such

http://www.w3.org/TR/SVG/interact.html (9 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-keyevents

Interactivity - SVG 1.1 - 20030114

that they are responsive to user interface events. Among the set of possible user events are pointer
events, keyboard events, and document events.

In response to user interface (UI) events, the author might start an animation, perform a hyperlink to
another Web page, highlight part of the document (e.g., change the color of the graphics elements
which are under the pointer), initiate a "roll-over" (e.g., cause some previously hidden graphics
elements to appear near the pointer) or launch a script which communicates with a remote database.

For all UI event-related features defined as part of the SVG language via event attributes or
animation, the event model corresponds to the event bubbling model described in DOM2 [DOM2-
EVBUBBLE]. The event capture model from DOM2 [DOM2-EVCAPTURE] can only be established
from DOM method calls.

16.4 Pointer events

User interface events that occur because of user actions performed on a pointer device are called
pointer events.

Many systems support pointer devices such as a mouse or trackball. On systems which use a
mouse, pointer events consist of actions such as mouse movements and mouse clicks. On systems
with a different pointer device, the pointing device often emulates the behavior of the mouse by
providing a mechanism for equivalent user actions, such as a button to press which is equivalent to a
mouse click.

For each pointer event, the SVG user agent determines the target element of a given pointer event.
The target element is the topmost graphics element whose relevant graphical content is under the
pointer at the time of the event. (See property 'pointer-events' for a description of how to determine
whether an element's relevant graphical content is under the pointer, and thus in which
circumstances that graphic element can be the target element for a pointer event.) When an element
is not displayed (i.e., when the 'display' property on that element or one of its ancestors has a value
of none), that element cannot be the target of pointer events.

The event is either initially dispatched to the target element, to one of the target element's ancestors,
or not dispatched, depending on the following:

● If there are no graphics elements whose relevant graphics content is under the pointer (i.e.,
there is no target element), the event is not dispatched.

● Otherwise, there is a target element. If there is an ancestor of the target element which has
specified an event handler with event capturing [DOM2-EVCAPTURE] for the given event,
then the event is dispatched to that ancestor element.

● Otherwise, if the target element has an appropriate event handler for the given event, the
event is dispatched to the target element.

● Otherwise, each ancestor of the target element (starting with its immediate parent) is checked
to see if it has an appropriate event handler. If an ancestor is found with an appropriate event
handler, the event is dispatched to that ancestor element.

● Otherwise, the event is discarded.

When event bubbling [DOM2-EVBUBBLE] is active, bubbling occurs up to all direct ancestors of the
target element. Descendant elements receive events before their ancestors. Thus, if a 'path' element
is a child of a 'g' element and they both have event listeners for click events, then the event will be

http://www.w3.org/TR/SVG/interact.html (10 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html

Interactivity - SVG 1.1 - 20030114

dispatched to the 'path' element before the 'g' element.

When event capturing [DOM2-EVCAPTURE] is active, ancestor elements receive events before their
descendants.

After an event is initially dispatched to a particular element, unless an appropriate action has been
taken to prevent further processing (e.g., by invoking the preventCapture() or preventBubble() DOM
method call), the event will be passed to the appropriate event handlers (if any) for that element's
ancestors (in the case of event bubbling) or that element's descendants (in the case of event
capture) for further processing.

16.5 Processing order for user interface events

The processing order for user interface events is as follows:

● Event handlers assigned to the topmost graphics element under the pointer (and the various
ancestors of that graphics element via potential event bubbling [DOM2-EVBUBBLE]) receive
the event first. If none of the activation event handlers take an explicit action to prevent further
processing of the given event (e.g., by invoking the preventDefault() DOM method), then the
event is passed on for:

● Processing of any relevant dynamic pseudo-classes (i.e., :hover, :active and :focus) [CSS2-
DYNPSEUDO], after which the event is passed on for:

● (For those user interface events which invoke hyperlinks, such as mouse clicks in some user
agents) Link processing. If a hyperlink is invoked in response to a user interface event, the
hyperlink typically will disable further activation event processing (e.g., often, the link will
define a hyperlink to another Web page). If link processing does not disable further processing
of the given event, then the event is passed on for:

● (For those user interface events which can select text, such as mouse clicks and drags on
'text' elements) Text selection processing. When a text selection operation occurs, typically it
will disable further processing of the given event; otherwise, the event is passed on for:

● Document-wide event processing, such as user agent facilities to allow zooming and panning
of an SVG document fragment.

16.6 The 'pointer-events' property

In different circumstances, authors may want to control under what circumstances particular graphic
elements can become the target of pointer events. For example, the author might want a given
element to receive pointer events only when the pointer is over the stroked perimeter of a given
shape. In other cases, the author might want a given element to ignore pointer events under all
circumstances so that graphical elements underneath the given element will become the target of
pointer events.

For example, suppose a circle with a 'stroke' of red (i.e., the outline is solid red) and a 'fill' of none (i.
e., the interior is not painted) is rendered directly on top of a rectangle with a 'fill' of blue. The author
might want the circle to be the target of pointer events only when the pointer is over the perimeter of
the circle. When the pointer is over the interior of the circle, the author might want the underlying
rectangle to be the target element of pointer events.

http://www.w3.org/TR/SVG/interact.html (11 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/selector.html#q15

Interactivity - SVG 1.1 - 20030114

The 'pointer-events' property specifies under what circumstances a given graphics element can be
the target element for a pointer event. It affects the circumstances under which the following are
processed:

● user interface events such as mouse clicks
● dynamic pseudo-classes (i.e., :hover, :active and :focus) [CSS2-DYNPSEUDO]
● hyperlinks (see Links out of SVG content: the 'a' element)

'pointer-events'
Value: visiblePainted | visibleFill | visibleStroke | visible |

painted | fill | stroke | all | none | inherit
Initial: visiblePainted
Applies to: graphics elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

visiblePainted
The given element can be the target element for pointer events when the 'visibility' property is
set to visible and when the pointer is over a "painted" area. The pointer is over a painted area
if it is over the interior (i.e., fill) of the element and the 'fill' property is set to a value other than
'none' or it is over the perimeter (i.e., stroke) of the element and the 'stroke' property is set to a
value other than 'none'.

visibleFill
The given element can be the target element for pointer events when the 'visibility' property is
set to visible and when the pointer is over the interior (i.e., fill) of the element. The value of the
'fill' property does not effect event processing.

visibleStroke
The given element can be the target element for pointer events when the 'visibility' property is
set to visible and when the pointer is over the perimeter (i.e., stroke) of the element. The value
of the 'stroke' property does not effect event processing.

visible
The given element can be the target element for pointer events when the 'visibility' property is
set to visible and the pointer is over either the interior (i.e., fill) or the perimeter (i.e., stroke) of
the element. The values of the 'fill' and 'stroke' do not effect event processing.

painted
The given element can be the target element for pointer events when the pointer is over a
"painted" area. The pointer is over a painted area if it is over the interior (i.e., fill) of the
element and the 'fill' property is set to a value other than 'none' or it is over the perimeter (i.e.,
stroke) of the element and the 'stroke' property is set to a value other than 'none'. The value of
the 'visibility' property does not effect event processing.

fill
The given element can be the target element for pointer events when the pointer is over the
interior (i.e., fill) of the element. The values of the 'fill' and 'visibility' properties do not effect
event processing.

stroke
The given element can be the target element for pointer events when the pointer is over the
perimeter (i.e., stroke) of the element. The values of the 'stroke' and 'visibility' properties do
not effect event processing.

all

http://www.w3.org/TR/SVG/interact.html (12 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Interactivity - SVG 1.1 - 20030114

The given element can be the target element for pointer events whenever the pointer is over
either the interior (i.e., fill) or the perimeter (i.e., stroke) of the element. The values of the 'fill',
'stroke' and 'visibility' properties do not effect event processing.

none
The given element does not receive pointer events.

For text elements, hit detection is performed on a character cell basis:

● The value visiblePainted means that the text string can receive events anywhere within the
character cell if either the 'fill' property is set to a value other than none or the 'stroke' property
is set to a value other than none, with the additional requirement that the 'visibility' property is
set to visible.

● The values visibleFill, visibleStroke and visible are equivalent and indicate that the text string
can receive events anywhere within the character cell if the 'visibility' property is set to visible.
The values of the 'fill' and 'stroke' properties do not effect event processing.

● The value painted means that the text string can receive events anywhere within the character
cell if either the 'fill' property is set to a value other than none or the 'stroke' property is set to a
value other than none. The value of the 'visibility' property does not effect event processing.

● The values fill, stroke and all are equivalent and indicate that the text string can receive events
anywhere within the character cell. The values of the 'fill', 'stroke' and 'visibility' properties do
not effect event processing.

● The value none indicates that the given text does not receive pointer events.

For raster images, hit detection is either performed on a whole-image basis (i.e., the rectangular area
for the image is one of the determinants for whether the image receives the event) or on a per-pixel
basic (i.e., the alpha values for pixels under the pointer help determine whether the image receives
the event):

● The value visiblePainted means that the raster image can receive events anywhere within the
bounds of the image if any pixel from the raster image which is under the pointer is not fully
transparent, with the additional requirement that the 'visibility' property is set to visible.

● The values visibleFill, visibleStroke and visible are equivalent and indicate that the image can
receive events anywhere within the rectangular area for the image if the 'visibility' property is
set to visible.

● The value painted means that the raster image can receive events anywhere within the
bounds of the image if any pixel from the raster image which is under the pointer is not fully
transparent. The value of the 'visibility' property does not effect event processing.

● The values fill, stroke and all are equivalent and indicate that the image can receive events
anywhere within the rectangular area for the image. The value of the 'visibility' property does
not effect event processing.

● The value none indicates that the image does not receive pointer events.

Note that for raster images, the values of properties 'opacity', 'fill-opacity', 'stroke-opacity', 'fill' and
'stroke' do not effect event processing.

16.7 Magnification and panning

Magnification represents a complete, uniform transformation on an SVG document fragment, where
the magnify operation scales all graphical elements by the same amount. A magnify operation has
the effect of a supplemental scale and translate transformation placed at the outermost level on the

http://www.w3.org/TR/SVG/interact.html (13 of 18)4/2/07 7:25 PM

Interactivity - SVG 1.1 - 20030114

SVG document fragment (i.e., outside the outermost 'svg' element).

Panning represents a translation (i.e., a shift) transformation on an SVG document fragment in
response to a user interface action.

SVG user agents that operate in interaction-capable user environments are required to support the
ability to magnify and pan.

The outermost 'svg' element in an SVG document fragment has attribute zoomAndPan, which takes
the possible values of disable and magnify, with the default being magnify.

If disable, the user agent shall disable any magnification and panning controls and not allow the user
to magnify or pan on the given document fragment.

If magnify, in environments that support user interactivity, the user agent shall provide controls to
allow the user to perform a "magnify" operation on the document fragment.

If a zoomAndPan attribute is assigned to an inner 'svg' element, the zoomAndPan setting on the inner
'svg' element will have no effect on the SVG user agent.

Animatable: no.

16.8 Cursors

16.8.1 Introduction to cursors

Some interactive display environments provide the ability to modify the appearance of the pointer,
which is also known as the cursor. Three types of cursors are available:

● Standard built-in cursors
● Platform-specific custom cursors
● Platform-independent custom cursors

The 'cursor' property is used to specify which cursor to use. The 'cursor' property can be used to
reference standard built-in cursors by specifying a keyword such as crosshair or a custom cursor.
Custom cursors are referenced via a <uri> and can point to either an external resource such as a
platform-specific cursor file or to a 'cursor' element, which can be used to define a platform-
independent cursor.

16.8.2 The 'cursor' property

'cursor'
Value: [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize | ne-resize | nw-

resize | n-resize | se-resize | sw-resize | s-resize | w-resize| text | wait | help]] |
inherit

Initial: auto
Applies to: container elements and graphics elements
Inherited: yes

http://www.w3.org/TR/SVG/interact.html (14 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Interactivity - SVG 1.1 - 20030114

Percentages: N/A
Media: visual, interactive
Animatable: yes

This property specifies the type of cursor to be displayed for the pointing device. Values have the
following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the 'se-resize' cursor is used when the
movement starts from the south-east corner of the box.

text
Indicates text that can be selected. Often rendered as an I-bar.

wait
Indicates that the program is busy. Often rendered as a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question mark or a
balloon.

<uri>
The user agent retrieves the cursor from the resource designated by the URI. If the user agent
cannot handle the first cursor of a list of cursors, it shall attempt to handle the second, etc. If
the user agent cannot handle any user-defined cursor, it must use the generic cursor at the
end of the list.

P { cursor : url("mything.cur"), url("second.csr"), text; }

The 'cursor' property for SVG is identical to the 'cursor' property defined in the "Cascading Style
Sheets (CSS) level 2" specification [CSS2], with the exception that SVG user agents must support
cursors defined by the 'cursor' element.

16.8.3 The 'cursor' element

The 'cursor' element can be used to define a platform-independent custom cursor. A recommended
approach for defining a platform-independent custom cursor is to create a PNG [PNG01] image and
define a 'cursor' element that references the PNG image and identifies the exact position within the
image which is the pointer position (i.e., the hot spot).

The PNG format is recommended because it supports the ability to define a transparency mask via
an alpha channel. If a different image format is used, this format should support the definition of a
transparency mask (two options: provide an explicit alpha channel or use a particular pixel color to
indicate transparency). If the transparency mask can be determined, the mask defines the shape of
the cursor; otherwise, the cursor is an opaque rectangle. Typically, the other pixel information (e.g.,

http://www.w3.org/TR/SVG/interact.html (15 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-png-multi.html

Interactivity - SVG 1.1 - 20030114

the R, G and B channels) defines the colors for those parts of the cursor which are not masked out.
Note that cursors usually contain at least two colors so that the cursor can be visible over most
backgrounds.

<!ENTITY % SVG.cursor.extra.content "" >
<!ENTITY % SVG.cursor.element "INCLUDE" >
<![%SVG.cursor.element;[
<!ENTITY % SVG.cursor.content
 "(%SVG.Description.class; %SVG.cursor.extra.content;)*\

"
>
<!ELEMENT %SVG.cursor.qname; %SVG.cursor.content; >

<!-- end of SVG.cursor.element -->]]>
<!ENTITY % SVG.cursor.attlist "INCLUDE" >
<![%SVG.cursor.attlist;[
<!ATTLIST %SVG.cursor.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.XLinkRequired.attrib;

 %SVG.External.attrib;

 x %Coordinate.datatype; #IMPLIED

 y %Coordinate.datatype; #IMPLIED

>

Attribute definitions:

x = "<coordinate>"
The x-coordinate of the position in the cursor's coordinate system which represents the
precise position that is being pointed to.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y = "<coordinate>"
The y-coordinate of the position in the cursor's coordinate system which represents the
precise position that is being pointed to.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

xlink:href = "<uri>"
A URI reference to the file or element which provides the image of the cursor.
Animatable: yes.

SVG user agents are required to support PNG format images as targets of the xlink:href property.

16.9 Document Events Attribute Module

The Document Events Attribute Module defines the DocumentEvents.attrib attribute set.

http://www.w3.org/TR/SVG/interact.html (16 of 18)4/2/07 7:25 PM

Interactivity - SVG 1.1 - 20030114

Collection Name Attributes in Collection

DocumentEvents.attrib onunload, onabort, onerror, onresize, onscroll, onzoom

16.10 Graphical Element Events Attribute Module

The Graphical Element Events Attribute Module defines the GraphicalEvents.attrib attribute set.

Collection Name Attributes in Collection

GraphicalEvents.attrib
onfocusin, onfocusout, onactivate, onclick, onmousedown, onmouseup,
onmouseover, onmousemove, onmouseout, onload

16.11 Animation Events Attribute Module

The Animation Events Attribute Module defines the AnimationEvents.attrib attribute set.

Collection Name Attributes in Collection

AnimationEvents.attrib onbegin, onend, onrepeat, onload

16.12 Cursor Module

Elements Attributes Content Model

cursor
Core.attrib, XLinkRequired.attrib, Conditional.attrib, External.attrib,
x, y

(Description.class)

16.12.1 Cursor Content Set

The Cursor Module defines the Cursor.class content set.

Content Set Name Elements in Content Set

Cursor.class cursor

16.12.2 Cursor Attribute Set

The Cursor Module defines the Cursor.attrib attribute set.

Collection Name Attributes in Collection

Cursor.attrib cursor

16.13 DOM interfaces

http://www.w3.org/TR/SVG/interact.html (17 of 18)4/2/07 7:25 PM

Interactivity - SVG 1.1 - 20030114

The following interfaces are defined below: SVGCursorElement.

Interface SVGCursorElement

The SVGCursorElement interface corresponds to the 'cursor' element.

IDL Definition

interface SVGCursorElement :
 SVGElement,
 SVGURIReference,
 SVGTests,
 SVGExternalResourcesRequired {
 readonly attribute SVGAnimatedLength x;
 readonly attribute SVGAnimatedLength y;
};

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'cursor' element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'cursor' element.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/interact.html (18 of 18)4/2/07 7:25 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Linking - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

17 Linking

Contents

● 17.1 Links out of SVG content: the 'a' element
● 17.2 Linking into SVG content: URI fragments and SVG views

❍ 17.2.1 Introduction: URI fragments and SVG views
❍ 17.2.2 SVG fragment identifiers
❍ 17.2.3 Predefined views: the 'view' element

● 17.3 Hyperlinking Module
● 17.4 Xlink Attribute Module
● 17.5 ExternalResourcesRequired Attribute Module
● 17.6 View Module
● 17.7 DOM interfaces

17.1 Links out of SVG content: the 'a' element

SVG provides an 'a' element, analogous to HTML's 'a' element, to indicate links (also known as hyperlinks
or Web links). SVG uses XLink ([XLink]) for all link definitions.

SVG 1.0 only requires that user agents support XLink's notion of simple links. Each simple link associates
exactly two resources, one local and one remote, with an arc going from the former to the latter.

A simple link is defined for each separate rendered element contained within the 'a' element; thus, if the 'a'
element contains three 'circle' elements, a link is created for each circle. For each rendered element within
an 'a' element, the given rendered element is the local resource (the source anchor for the link).

The remote resource (the destination for the link) is defined by a URI specified by the XLink href attribute
on the 'a' element. The remote resource may be any Web resource (e.g., an image, a video clip, a sound
bite, a program, another SVG document, an HTML document, an element within the current document, an
element within a different document, etc.). By activating these links (by clicking with the mouse, through
keyboard input, voice commands, etc.), users may visit these resources.

Example link01 assigns a link to an ellipse.

<?xml version="1.0" standalone="no"?>

http://www.w3.org/TR/SVG/linking.html (1 of 8)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/html401/struct/links.html#h-12.2
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/#simple-links

Linking - SVG 1.1 - 20030114

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="3cm" viewBox="0 0 5 3" version="1.1"
 xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
 <desc>Example link01 - a link on an ellipse
 </desc>
 <rect x=".01" y=".01" width="4.98" height="2.98"
 fill="none" stroke="blue" stroke-width=".03"/>
 <a xlink:href="http://www.w3.org">
 <ellipse cx="2.5" cy="1.5" rx="2" ry="1"
 fill="red" />

</svg>

Example
link01

View this example as SVG (SVG-enabled browsers only)

If the above SVG file is viewed by a user agent that supports both SVG and HTML, then clicking on the
ellipse will cause the current window or frame to be replaced by the W3C home page.

<!ENTITY % SVG.a.extra.content "" >
<!ENTITY % SVG.a.element "INCLUDE" >
<![%SVG.a.element;[
<!ENTITY % SVG.a.content
 "(#PCDATA | %SVG.Description.class; | %SVG.Animation.class;

 %SVG.Structure.class; %SVG.Conditional.class; %SVG.Image.class;

 %SVG.Style.class; %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.a.extra.content;)*"

>
<!ELEMENT %SVG.a.qname; %SVG.a.content; >

<!-- end of SVG.a.element -->]]>
<!ENTITY % SVG.a.attlist "INCLUDE" >
<![%SVG.a.attlist;[
<!ATTLIST %SVG.a.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.GraphicalEvents.attrib;

 %SVG.XLinkReplace.attrib;

http://www.w3.org/TR/SVG/linking.html (2 of 8)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/images/linking/link01.svg

Linking - SVG 1.1 - 20030114

 %SVG.External.attrib;

 transform %TransformList.datatype; #IMPLIED

 target %LinkTarget.datatype; #IMPLIED
>

Attribute definitions:

xmlns [:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink]
namespace available to the current element. Refer to the "Namespaces in XML" Recommendation
[XML-NS].
Animatable: no.

xlink:type = 'simple'
(See generic description of xlink:type attribute.)

xlink:role = '<uri>'
(See generic description of xlink:role attribute.)

xlink:arcrole = '<uri>'
(See generic description of xlink:arcrole attribute.)

xlink:title = '<string>'
(See generic description of xlink:title attribute.)

xlink:show = 'new | replace'
Indicates whether, upon activation of the link, traversing to the ending resource should load it in a
new window, frame, pane, or other relevant presentation context or load it in the same window,
frame, pane, or other relevant presentation context in which the starting resource was loaded. Refer
to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:actuate = 'onRequest'
An application should traverse from the starting resource to the ending resource only on a post-
loading event triggered for the purpose of traversal. Refer to the "XML Linking Language
(XLink)" [XLink].
Animatable: no.

xlink:href = "<uri>"
The location of the referenced object, expressed as a URI reference. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: yes.

target = "<frame-target>"
This attribute has applicability when there are multiple possible targets for the ending resource,
such as when the parent document is a multi-frame HTML or XHTML document. This attribute
specifies the name of the target location (e.g., an HTML or XHTML frame) into which a document is
to be opened when the link is activated. For more information on targets, refer to the appropriate
HTML or XHTML specifications.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs; %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;,
externalResourcesRequired style, %PresentationAttributes-All;.

17.2 Linking into SVG content: URI fragments and SVG views

http://www.w3.org/TR/SVG/linking.html (3 of 8)4/2/07 7:26 PM

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/

Linking - SVG 1.1 - 20030114

17.2.1 Introduction: URI fragments and SVG views

On the Internet, resources are identified using URIs (Uniform Resource Identifiers) [URI]. For example, an
SVG file called MyDrawing.svg located at http://example.com might have the following URI:

http://example.com/MyDrawing.svg

A URI can also address a particular element within an XML document by including a URI fragment
identifier as part of the URI. A URI which includes a URI fragment identifier consists of an optional base
URI, followed by a "#" character, followed by the URI fragment identifier. For example, the following URI
can be used to specify the element whose ID is "Lamppost" within file MyDrawing.svg:

http://example.com/MyDrawing.svg#Lamppost

Because SVG content often represents a picture or drawing of something, a common need is to link into a
particular view of the document, where a view indicates the initial transformations so as to present a
closeup of a particular section of the document.

17.2.2 SVG fragment identifiers

To link into a particular view of an SVG document, the URI fragment identifier needs to be a correctly
formed SVG fragment identifier. An SVG fragment identifier defines the meaning of the "selector" or
"fragment identifier" portion of URIs that locate resources of MIME media type "image/svg+xml".

An SVG fragment identifier can come in three forms:

● Shorthand bare name form of addressing (e.g., MyDrawing.svg#MyView). This form of addressing,
which allows addressing an SVG element by its ID, is compatible with the fragment addressing
mechanism for older versions of HTML and the shorthand bare name formulation in "XML Pointer
Language (XPointer)" [XPTR]. (The bare name form of addressing #MyView is equivalent to the
XPointer formulation #xpointer(id('MyView')).)

● XPointer-compatible ID reference (e.g., MyDrawing.svg#xpointer(id('MyView'))). This form of
addressing, which also allows addressing an SVG element by its ID, is compatible with "XML
Pointer Language (XPointer)" [XPTR] syntax and the XPath syntax for referencing IDs.

● SVG view specification (e.g., MyDrawing.svg#svgView(viewBox(0,200,1000,1000))). This form of
addressing specifies the desired view of the document (e.g., the region of the document to view, the
initial zoom level) completely within the SVG fragment specification. The contents of the SVG view
specification are the five parameter specifications, viewBox(...), preserveAspectRatio(...), transform
(...), zoomAndPan(...) and viewTarget(...), whose parameters have the same meaning as the
corresponding attributes on a 'view' element, or, in the case of transform(...), the same meaning as
the corresponding attribute has on a 'g' element).

An SVG fragment identifier is defined as follows:

SVGFragmentIdentifier ::= BareName |
 XPointerIDRef |
 SVGViewSpec

BareName ::= XML_Name
SVGViewSpec ::= 'svgView(' SVGViewAttributes ')'
SVGViewAttributes ::= SVGViewAttribute |
 SVGViewAttribute ';' SVGViewAttributes

http://www.w3.org/TR/SVG/linking.html (4 of 8)4/2/07 7:26 PM

http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xpath#function-id
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xpath#function-id

Linking - SVG 1.1 - 20030114

SVGViewAttribute ::= viewBoxSpec |
 preserveAspectRatioSpec |
 transformSpec |
 zoomAndPanSpec |
 viewTargetSpec
viewBoxSpec ::= 'viewBox(' ViewBoxParams ')'
preserveAspectRatioSpec = 'preserveAspectRatio(' AspectParams ')'
transformSpec ::= 'transform(' TransformParams ')'
zoomAndPanSpec ::= 'zoomAndPan(' ZoomAndPanParams ')'
viewTargetSpec ::= 'viewTarget(' ViewTargetParams ')'

where:

● XPointerIDRef conforms to the rules for referencing IDs in XPointer (see [XPTR] and XPath syntax
for referencing IDs). For example, xpointer(id('MyView')).

● ViewBoxParams corresponds to the parameter values for the viewBox attribute on the 'view'
element. For example, viewBox(0,0,200,200).

● AspectParams corresponds to the parameter values for the preserveAspectRatio attribute on the
'view' element. For example, preserveAspectRatio(xMidYMid).

● TransformParams corresponds to the parameter values for the transform attribute that is available
on many elements. For example, transform(scale(5)).

● ZoomAndPanParams corresponds to the parameter values for the zoomAndPan attribute on the
'view' element. For example, zoomAndPan(magnify).

● ViewTargetParams corresponds to the parameter values for the viewTarget attribute on the 'view'
element. For example, viewTarget(MyElementID).

Spaces are not allowed in fragment specifications; thus, commas are used to separate numeric values
within an SVG view specification (e.g., #svgView(viewBox(0,0,200,200))) and semicolons are used to
separate attributes (e.g., #svgView(viewBox(0,0,200,200);preserveAspectRatio(none))).

When a source document performs a link into an SVG document via an HTML [HTML4] anchor element (i.
e., element in HTML) or an XLink specification [XLINK], then the SVG fragment identifier
specifies the initial view into the SVG document, as follows:

● If no SVG fragment identifier is provided (e.g, the specified URI did not contain a "#" character, such
as MyDrawing.svg), then the initial view into the SVG document is established using the view
specification attributes (i.e., viewBox, etc.) on the outermost 'svg' element.

● If the SVG fragment identifier addresses a 'view' element within an SVG document (e.g., MyDrawing.
svg#MyView or MyDrawing.svg#xpointer(id('MyView'))) then the closest ancestor 'svg' element is
displayed in the viewport. Any view specification attributes included on the given 'view' element
override the corresponding view specification attributes on the closest ancestor 'svg' element.

● If the SVG fragment identifier addresses specific SVG view (e.g., MyDrawing.svg#svgView(viewBox
(0,200,1000,1000))), then the document fragment defined by the closest ancestor 'svg' element is
displayed in the viewport using the SVG view specification provided by the SVG fragment identifier.

● If the SVG fragment identifier addresses any element other than a 'view' element, then the
document defined by the closest ancestor 'svg' element is displayed in the viewport using the view
specification attributes on that 'svg' element.

17.2.3 Predefined views: the 'view' element

The 'view' element is defined as follows:

http://www.w3.org/TR/SVG/linking.html (5 of 8)4/2/07 7:26 PM

http://www.w3.org/TR/xptr
http://www.w3.org/TR/xpath#function-id
http://www.w3.org/TR/xpath#function-id
http://www.w3.org/TR/html401/
http://www.w3.org/TR/xlink/

Linking - SVG 1.1 - 20030114

<!ENTITY % SVG.view.extra.content "" >
<!ENTITY % SVG.view.element "INCLUDE" >
<![%SVG.view.element;[
<!ENTITY % SVG.view.content
 "(%SVG.Description.class; %SVG.view.extra.content;)*"

>
<!ELEMENT %SVG.view.qname; %SVG.view.content; >

<!-- end of SVG.view.element -->]]>
<!ENTITY % SVG.view.attlist "INCLUDE" >
<![%SVG.view.attlist;[
<!ATTLIST %SVG.view.qname;

 %SVG.Core.attrib;

 %SVG.External.attrib;

 viewBox %ViewBoxSpec.datatype; #IMPLIED
 preserveAspectRatio %PreserveAspectRatioSpec.datatype; 'xMidYMid meet'
 zoomAndPan (disable | magnify) 'magnify'
 viewTarget CDATA #IMPLIED
>

Attribute definitions:

viewTarget = "XML_Name [XML_NAME]*"
Indicates the target object associated with the view. If provided, then the target element(s) will be
highlighted.
Animatable: no.

Attributes defined elsewhere:

%stdAttrs;, viewBox, preserveAspectRatio, zoomAndPan externalResourcesRequired.

17.3 Hyperlinking Module

Elements Attributes Content Model

a

Core.attrib, Conditional.attrib, Style.
attrib, transform, target, GraphicalEvents.
attrib, Presentation.attrib, External.attrib,
XLinkReplace.attrib

(#PCDATA | Structure.class | Description.class
Shape.class | Image.class | | View.class |
Conditional.class | HyperinkingElements | Font.
class | Script.class | Style.class | Marker.class |
Clip.class | Mask.class | Gradient.class | Pattern.
class | Filter.class | Cursor.class | Animation.class
| ColorProfile.class)*

17.3.1 Hyperlinking Content Set

The Hyperlinking Module defines the Hyperlink.class content set.

Content Set Name Elements in Content Set

Hyperlink.class a

http://www.w3.org/TR/SVG/linking.html (6 of 8)4/2/07 7:26 PM

Linking - SVG 1.1 - 20030114

17.4 XLink Attribute Module

The XLink Attribute Module defines the XLink.attrib, XLinkRequired.attrib, XLinkEmbed.attrib and
XLinkReplace.attrib attribute sets.

Collection Name Attributes in Collection

XLink.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkRequired.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkEmbed.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

XLinkReplace.attrib xlink:type, xlink:href, xlink:role, xlink:arcrole, xlink:title, xlink:show, xlink:actuate

17.5 ExternalResourcesRequired Attribute Module

The ExternalResourcesRequired Attribute Module defines the External.attrib attribute set.

Collection Name Attributes in Collection

External.attrib externalResourcesRequired

17.6 View Module

Elements Attributes Content Model

view
Core.attrib, External.attrib, viewBox, preserveAspectRatio, zoomAndPan,
viewTarget

(Description.class)

17.6.1 View Content Set

The View Module defines the View.class content set.

Content Set Name Elements in Content Set

View.class view

17.7 DOM interfaces

The following interfaces are defined below: SVGAElement, SVGViewElement.

Interface SVGAElement

The SVGAElement interface corresponds to the 'a' element.

IDL Definition

http://www.w3.org/TR/SVG/linking.html (7 of 8)4/2/07 7:26 PM

Linking - SVG 1.1 - 20030114

interface SVGAElement :
 SVGElement,
 SVGURIReference,
 SVGTests,
 SVGLangSpace,
 SVGExternalResourcesRequired,
 SVGStylable,
 SVGTransformable,
 events::EventTarget {
 readonly attribute SVGAnimatedString target;
};

Attributes

readonly SVGAnimatedString target
Corresponds to attribute target on the given 'a' element.

Interface SVGViewElement

The SVGViewElement interface corresponds to the 'view' element.

IDL Definition

interface SVGViewElement :
 SVGElement,
 SVGExternalResourcesRequired,
 SVGFitToViewBox,
 SVGZoomAndPan {
 readonly attribute SVGStringList viewTarget;
};

Attributes

readonly SVGStringList viewTarget
Corresponds to attribute viewTarget on the given 'view' element. A list of DOMString values
which contain the names listed in the viewTarget attribute. Each of the DOMString values can
be associated with the corresponding element using the getElementById() method call.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/linking.html (8 of 8)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Scripting - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

18 Scripting

Contents

● 18.1 Specifying the scripting language
❍ 18.1.1 Specifying the default scripting language
❍ 18.1.2 Local declaration of a scripting language

● 18.2 The 'script' element
● 18.3 Event handling
● 18.4 Event attributes
● 18.5 Scripting Module
● 18.6 DOM interfaces

 .

18.1 Specifying the scripting language

18.1.1 Specifying the default scripting language

The contentScriptType attribute on the 'svg' element specifies the default scripting language for the
given document fragment.

contentScriptType = "content-type"
Identifies the default scripting language for the given document. This attribute sets the
scripting language used to process the value strings in event attributes. The value content-

type specifies a media type, per [RFC2045]. The default value is "text/ecmascript" (Note that
at the time of publication "text/ecmascript" has not been registered as the media type for
ECMAScript. It will continue to be the default unless an alternative is registered).
Animatable: no.

18.1.2 Local declaration of a scripting language

It is also possible to specify the scripting language for each individual 'script' element by specifying
a type attribute on the 'script' element.

http://www.w3.org/TR/SVG/script.html (1 of 9)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.ietf.org/rfc/rfc2045.txt

Scripting - SVG 1.1 - 20030114

18.2 The 'script' element

A 'script' element is equivalent to the 'script' element in HTML and thus is the place for scripts (e.g.,
ECMAScript). Any functions defined within any 'script' element have a "global" scope across the
entire current document.

Example script01 defines a function circle_click which is called by the onclick event attribute
on the 'circle' element. The drawing below on the left is the initial image. The drawing below on the
right shows the result after clicking on the circle.

Note that this example demonstrates the use of the onclick event attribute for explanatory purposes.
The example presupposes the presence of an input device with the same behavioral characteristics
as a mouse, which will not always be the case. To support the widest range of users, the onactivate
event attribute should be used instead of the onclick event attribute.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="6cm" height="5cm" viewBox="0 0 600 500"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example script01 - invoke an ECMAScript function from an onclick event
 </desc>
 <!-- ECMAScript to change the radius with each click -->
 <script type="text/ecmascript"> <![CDATA[
 function circle_click(evt) {
 var circle = evt.target;
 var currentRadius = circle.getAttribute("r");
 if (currentRadius == 100)
 circle.setAttribute("r", currentRadius*2);
 else
 circle.setAttribute("r", currentRadius*0.5);
 }
]]> </script>
 <!-- Outline the drawing area with a blue line -->
 <rect x="1" y="1" width="598" height="498" fill="none" stroke="blue"/>
 <!-- Act on each click event -->
 <circle onclick="circle_click(evt)" cx="300" cy="225" r="100"
 fill="red"/>
 <text x="300" y="480"
 font-family="Verdana" font-size="35" text-anchor="middle">
 Click on circle to change its size
 </text>
</svg>

http://www.w3.org/TR/SVG/script.html (2 of 9)4/2/07 7:26 PM

Scripting - SVG 1.1 - 20030114

Example script01

View this example as SVG (SVG-enabled browsers only)

<!ENTITY % SVG.script.extra.content "" >
<!ENTITY % SVG.script.element "INCLUDE" >
<![%SVG.script.element;[
<!ENTITY % SVG.script.content
 "(#PCDATA %SVG.script.extra.content;)*"
>
<!ELEMENT %SVG.script.qname; %SVG.script.content; >

<!-- end of SVG.script.element -->]]>
<!ENTITY % SVG.script.attlist "INCLUDE" >
<![%SVG.script.attlist;[
<!ATTLIST %SVG.script.qname;

 %SVG.Core.attrib;

 %SVG.XLink.attrib;

 %SVG.External.attrib;

 type %ContentType.datatype; #REQUIRED
>

Attribute definitions:

type = "content-type"
Identifies the scripting language for the given 'script' element. The value content-type
specifies a media type, per [RFC2045]. Animatable: no.

18.3 Event handling

Events can cause scripts to execute when either of the following has occurred:

● Event attributes such as "onclick" or "onload" are assigned to particular elements, where the
value of the event attributes contains script which is executed when the given event occurs.

● Event listeners as described in "Document Object Model Events" [DOM2-EVENTS] are
defined which are invoked when a given event happens on a given object

http://www.w3.org/TR/SVG/script.html (3 of 9)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/images/script/script01.svg
http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/SVG/svgdom.html#EventListeners
http://www.w3.org/TR/DOM-Level-2-Events/events.html

Scripting - SVG 1.1 - 20030114

Related sections of the spec:

● User interface events describes how an SVG user agent handles events such as pointer
movements events (e.g., mouse movement) and activation events (e.g., mouse click).

● Relationship with DOM2 events describes what parts of DOM are supported by SVG and how
to register event listeners

18.4 Event attributes

The following event attributes are available on many SVG elements.

The complete list of events that are part of the SVG language and SVG DOM and descriptions of
those events is provided in Complete list of supported events.

Event attributes on graphics and container elements

<!ENTITY % SVG.onfocusin.attrib

 "onfocusin %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onfocusout.attrib

 "onfocusout %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onactivate.attrib

 "onactivate %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onclick.attrib

 "onclick %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onmousedown.attrib

 "onmousedown %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onmouseup.attrib

 "onmouseup %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onmouseover.attrib

 "onmouseover %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onmousemove.attrib

 "onmousemove %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onmouseout.attrib

 "onmouseout %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onload.attrib

 "onload %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.GraphicalEvents.extra.attrib "" >
<!ENTITY % SVG.GraphicalEvents.attrib

 "%SVG.onfocusin.attrib;

 %SVG.onfocusout.attrib;

 %SVG.onactivate.attrib;

http://www.w3.org/TR/SVG/script.html (4 of 9)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/svgdom.html#RelationShipWithDOM2Events

Scripting - SVG 1.1 - 20030114

 %SVG.onclick.attrib;

 %SVG.onmousedown.attrib;

 %SVG.onmouseup.attrib;

 %SVG.onmouseover.attrib;

 %SVG.onmousemove.attrib;

 %SVG.onmouseout.attrib;

 %SVG.onload.attrib;

 %SVG.GraphicalEvents.extra.attrib;"
>

Document-level event attributes

<!ENTITY % SVG.onunload.attrib

 "onunload %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onabort.attrib

 "onabort %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onerror.attrib

 "onerror %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onresize.attrib

 "onresize %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onscroll.attrib

 "onscroll %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onzoom.attrib

 "onzoom %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.DocumentEvents.extra.attrib "" >
<!ENTITY % SVG.DocumentEvents.attrib

 "%SVG.onunload.attrib;

 %SVG.onabort.attrib;

 %SVG.onerror.attrib;

 %SVG.onresize.attrib;

 %SVG.onscroll.attrib;

 %SVG.onzoom.attrib;

 %SVG.DocumentEvents.extra.attrib;"
>

Animation event attributes

http://www.w3.org/TR/SVG/script.html (5 of 9)4/2/07 7:26 PM

Scripting - SVG 1.1 - 20030114

<!ENTITY % SVG.onbegin.attrib

 "onbegin %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onend.attrib

 "onend %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onrepeat.attrib

 "onrepeat %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.onload.attrib

 "onload %Script.datatype; #IMPLIED"
>
<!ENTITY % SVG.AnimationEvents.extra.attrib "" >
<!ENTITY % SVG.AnimationEvents.attrib

 "%SVG.onbegin.attrib;

 %SVG.onend.attrib;

 %SVG.onrepeat.attrib;

 %SVG.onload.attrib;

 %SVG.AnimationEvents.extra.attrib;"
>

Animatable: no.

18.5 Scripting Module

Elements Attributes Content Model

script Core.attrib, XLink.attrib, type #PCDATA

18.5.1 Scripting Content Set

The Scripting Module defines the Script.class content set.

Content Set Name Elements in Content Set

Script.class script

18.6 DOM interfaces

The following interfaces are defined below: SVGScriptElement, SVGEvent, SVGZoomEvent.

Interface SVGScriptElement

http://www.w3.org/TR/SVG/script.html (6 of 9)4/2/07 7:26 PM

Scripting - SVG 1.1 - 20030114

The SVGScriptElement interface corresponds to the 'script' element.

IDL Definition

interface SVGScriptElement :
 SVGElement,
 SVGURIReference,
 SVGExternalResourcesRequired {
 attribute DOMString type;
 // raises DOMException on setting
};

Attributes

DOMString type
Corresponds to attribute type on the given 'script' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt
to change the value of a readonly attribute.

Interface SVGEvent

The SVG event set contains a list of special event types which are available in SVG.

A DOM consumer can use the hasFeature of the DOMImplementation interface to determine
whether the SVG event set has been implemented by a DOM implementation. The feature string for
this event set is "SVGEvents". This string is also used with the createEvent method.

The SVG events use the base DOM Event interface to pass contextual information.

The different types of such events that can occur are:

SVGLoad
See SVGLoad event.

❍ Bubbles: No
❍ Cancelable: No
❍ Context Info: None

SVGUnload
See SVGUnload event.

❍ Bubbles: No
❍ Cancelable: No
❍ Context Info: None

SVGAbort
See SVGAbort event.

❍ Bubbles: Yes
❍ Cancelable: No

http://www.w3.org/TR/SVG/script.html (7 of 9)4/2/07 7:26 PM

Scripting - SVG 1.1 - 20030114

❍ Context Info: None
SVGError

See SVGError event.
❍ Bubbles: Yes
❍ Cancelable: No
❍ Context Info: None

SVGResize
See SVGResize event.

❍ Bubbles: Yes
❍ Cancelable: No
❍ Context Info: None

SVGScroll
See SVGScroll event.

❍ Bubbles: Yes
❍ Cancelable: No
❍ Context Info: None

IDL Definition

interface SVGEvent : events::Event {};

Interface SVGZoomEvent

A DOM consumer can use the hasFeature of the DOMImplementation interface to determine
whether the SVG zoom event set has been implemented by a DOM implementation. The feature
string for this event set is "SVGZoomEvents". This string is also used with the createEvent method.

The zoom event handler occurs before the zoom event is processed. The remainder of the DOM
represents the previous state of the document. The document will be updated upon normal return
from the event handler.

The UI event type for a zoom event is:

SVGZoom
The zoom event occurs when the user initiates an action which causes the current view of the
SVG document fragment to be rescaled. Event handlers are only recognized on 'svg'
elements. See SVGZoom event.

❍ Bubbles: Yes
❍ Cancelable: No
❍ Context Info: zoomRectScreen, previousScale, previousTranslate, newScale,

newTranslate, screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,
relatedNode.
(screenX, screenY, clientX and clientY indicate the center of the zoom area, with
clientX and clientY in viewport coordinates for the corresponding 'svg' element.
relatedNode is the corresponding 'svg' element.)

http://www.w3.org/TR/SVG/script.html (8 of 9)4/2/07 7:26 PM

Scripting - SVG 1.1 - 20030114

IDL Definition

interface SVGZoomEvent : events::UIEvent {
 readonly attribute SVGRect zoomRectScreen;
 readonly attribute float previousScale;
 readonly attribute SVGPoint previousTranslate;
 readonly attribute float newScale;
 readonly attribute SVGPoint newTranslate;
};

Attributes

readonly SVGRect zoomRectScreen

The specified zoom rectangle in screen units.

The object itself and its contents are both readonly.

readonly float previousScale
The scale factor from previous zoom operations that was in place before the zoom
operation occurred.

readonly SVGPoint previousTranslate

The translation values from previous zoom operations that were in place before the
zoom operation occurred.

The object itself and its contents are both readonly.

readonly float newScale
The scale factor that will be in place after the zoom operation has been processed.

readonly SVGPoint newTranslate

The translation values that will be in place after the zoom operation has been
processed.

The object itself and its contents are both readonly.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/script.html (9 of 9)4/2/07 7:26 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Animation - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

19 Animation

Contents

● 19.1 Introduction
● 19.2 Animation elements

❍ 19.2.1 Overview
❍ 19.2.2 Relationship to SMIL Animation
❍ 19.2.3 Animation elements example
❍ 19.2.4 Attributes to identify the target element for an animation
❍ 19.2.5 Attributes to identify the target attribute or property for an animation
❍ 19.2.6 Attributes to control the timing of the animation
❍ 19.2.7 Attributes that define animation values over time
❍ 19.2.8 Attributes that control whether animations are additive
❍ 19.2.9 Inheritance
❍ 19.2.10 The 'animate' element
❍ 19.2.11 The 'set' element
❍ 19.2.12 The 'animateMotion' element
❍ 19.2.13 The 'animateColor' element
❍ 19.2.14 The 'animateTransform' element
❍ 19.2.15 Elements, attributes and properties that can be animated

● 19.3 Animation using the SVG DOM
● 19.4 Animation Module
● 19.5 DOM interfaces

19.1 Introduction

Because the Web is a dynamic medium, SVG supports the ability to change vector graphics over time. SVG
content can be animated in the following ways:

● Using SVG's animation elements. SVG document fragments can describe time-based modifications to
the document's elements. Using the various animation elements, you can define motion paths, fade-in
or fade-out effects, and objects that grow, shrink, spin or change color.

● Using the SVG DOM. The SVG DOM conforms to key aspects of the "Document Object Model (DOM)
Level 1" [DOM1] and "Document Object Model (DOM) Level 2" [DOM2] specifications. Every attribute
and style sheet setting is accessible to scripting, and SVG offers a set of additional DOM interfaces to
support efficient animation via scripting. As a result, virtually any kind of animation can be achieved.

http://www.w3.org/TR/SVG/animate.html (1 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2/

Animation - SVG 1.1 - 20030114

The timer facilities in scripting languages such as ECMAScript can be used to start up and control the
animations. (See example below.)

● SVG has been designed to allow future versions of SMIL [SMIL1] to use animated or static SVG
content as media components.

● In the future, it is expected that future versions of SMIL will be modularized and that components of it
could be used in conjunction with SVG and other XML grammars to achieve animation effects.

19.2 Animation elements

19.2.1 Overview

SVG's animation elements were developed in collaboration with the W3C Synchronized Multimedia (SYMM)
Working Group, developers of the Synchronized Multimedia Integration Language (SMIL) 1.0 Specification
[SMIL1].

The SYMM Working Group, in collaboration with the SVG Working Group, has authored the SMIL Animation
specification [SMILANIM], which represents a general-purpose XML animation feature set. SVG
incorporates the animation features defined in the SMIL Animation specification and provides some SVG-
specific extensions.

For an introduction to the approach and features available in any language that supports SMIL Animation,
see SMIL Animation overview and SMIL Animation animation model. For the list of animation features which
go beyond SMIL Animation, see SVG extensions to SMIL Animation.

19.2.2 Relationship to SMIL Animation

SVG is a host language in terms of SMIL Animation and therefore introduces additional constraints and
features as permitted by that specification. Except for any SVG-specific rules explicitly mentioned in this
specification, the normative definition for SVG's animation elements and attributes is the SMIL Animation
[SMILANIM] specification.

SVG supports the following four animation elements which are defined in the SMIL Animation specification:

 'animate' allows scalar attributes and properties to be assigned different values over time

 'set' a convenient shorthand for 'animate', which is useful for assigning animation values
to non-numeric attributes and properties, such as the 'visibility' property

 'animateMotion' moves an element along a motion path

 'animateColor' modifies the color value of particular attributes or properties over time

Additionally, SVG includes the following compatible extensions to SMIL Animation:

 'animateTransform' modifies one of SVG's transformation attributes over time, such as the transform
attribute

 path attribute SVG allows any feature from SVG's path data syntax to be specified in a path
attribute to the 'animateMotion' element (SMIL Animation only allows a subset of
SVG's path data syntax within a path attribute)

 'mpath' element SVG allows an 'animateMotion' element to contain a child 'mpath' element which
references an SVG 'path' element as the definition of the motion path

 keyPoints attribute SVG adds a keyPoints attribute to the 'animateMotion' to provide precise control of
the velocity of motion path animations

http://www.w3.org/TR/SVG/animate.html (2 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationFramework
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationFramework
http://www.w3.org/TR/2001/REC-smil-animation-20010904/

Animation - SVG 1.1 - 20030114

 rotate attribute SVG adds a rotate attribute to the 'animateMotion' to control whether an object is
automatically rotated so that its x-axis points in the same direction (or opposite
direction) as the directional tangent vector of the motion path

For compatibility with other aspects of the language, SVG uses URI references via an xlink:href attribute to
identify the elements which are to be targets of the animations.

SMIL Animation requires that the host language define the meaning for document begin and the document
end. Since an 'svg' is sometimes the root of the XML document tree and other times can be a component of
a parent XML grammar, the document begin for a given SVG document fragment is defined to be the exact
time at which the 'svg' element's SVGLoad event is triggered. The document end of an SVG document
fragment is the point at which the document fragment has been released and is no longer being processed
by the user agent. However, nested 'svg' elements within an SVG document do not constitute document
fragments in this sense, and do not define a separate document begin; all times within the nested SVG
fragment are relative to the document time defined for the root 'svg' element.

For SVG, the term presentation time indicates the position in the timeline relative to the document begin of
a given document fragment.

SVG defines more constrained error processing than is defined in the SMIL Animation [SMILANIM]
specification. SMIL Animation defines error processing behavior where the document continues to run in
certain error situations, whereas all animations within an SVG document fragment will stop in the event of
any error within the document (see Error processing).

19.2.3 Animation elements example

Example anim01 below demonstrates each of SVG's five animation elements.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="8cm" height="3cm" viewBox="0 0 800 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1">
 <desc>Example anim01 - demonstrate animation elements</desc>
 <rect x="1" y="1" width="798" height="298"
 fill="none" stroke="blue" stroke-width="2" />
 <!-- The following illustrates the use of the 'animate' element
 to animate a rectangles x, y, and width attributes so that
 the rectangle grows to ultimately fill the viewport. -->
 <rect id="RectElement" x="300" y="100" width="300" height="100"
 fill="rgb(255,255,0)" >
 <animate attributeName="x" attributeType="XML"
 begin="0s" dur="9s" fill="freeze" from="300" to="0" />
 <animate attributeName="y" attributeType="XML"
 begin="0s" dur="9s" fill="freeze" from="100" to="0" />
 <animate attributeName="width" attributeType="XML"
 begin="0s" dur="9s" fill="freeze" from="300" to="800" />
 <animate attributeName="height" attributeType="XML"
 begin="0s" dur="9s" fill="freeze" from="100" to="300" />
 </rect>
 <!-- Set up a new user coordinate system so that
 the text string's origin is at (0,0), allowing
 rotation and scale relative to the new origin -->
 <g transform="translate(100,100)" >
 <!-- The following illustrates the use of the 'set', 'animateMotion',
 'animateColor' and 'animateTransform' elements. The 'text' element

http://www.w3.org/TR/SVG/animate.html (3 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Animation - SVG 1.1 - 20030114

 below starts off hidden (i.e., invisible). At 3 seconds, it:
 * becomes visible
 * continuously moves diagonally across the viewport
 * changes color from blue to dark red
 * rotates from -30 to zero degrees
 * scales by a factor of three. -->
 <text id="TextElement" x="0" y="0"
 font-family="Verdana" font-size="35.27" visibility="hidden" >
 It's alive!
 <set attributeName="visibility" attributeType="CSS" to="visible"
 begin="3s" dur="6s" fill="freeze" />
 <animateMotion path="M 0 0 L 100 100"
 begin="3s" dur="6s" fill="freeze" />
 <animateColor attributeName="fill" attributeType="CSS"
 from="rgb(0,0,255)" to="rgb(128,0,0)"
 begin="3s" dur="6s" fill="freeze" />
 <animateTransform attributeName="transform" attributeType="XML"
 type="rotate" from="-30" to="0"
 begin="3s" dur="6s" fill="freeze" />
 <animateTransform attributeName="transform" attributeType="XML"
 type="scale" from="1" to="3" additive="sum"
 begin="3s" dur="6s" fill="freeze" />
 </text>
 </g>
</svg>

At zero seconds

At three seconds

At six seconds

At nine seconds

Example anim01

View this example as SVG (SVG-enabled browsers only)

The sections below describe the various animation attributes and elements.

19.2.4 Attributes to identify the target element for an animation

The following attributes are common to all animation elements and identify the target element for the
animation.

http://www.w3.org/TR/SVG/animate.html (4 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/images/animate/anim01.svg

Animation - SVG 1.1 - 20030114

<!ENTITY % SVG.Animation.attrib

 "%SVG.XLink.attrib;

 %SVG.Animation.extra.attrib;"
>

Attribute definitions:

xlink:href = "<uri>"
A URI reference to the element which is the target of this animation and which therefore will be
modified over time.
The target element must be part of the current SVG document fragment.
<uri> must point to exactly one target element which is capable of being the target of the given
animation. If <uri> points to multiple target elements, if the given target element is not capable of being
a target of the given animation, or if the given target element is not part of the current SVG document
fragment, then the document is in error (see Error processing).
If the xlink:href attribute is not provided, then the target element will be the immediate parent element
of the current animation element.
Refer to the descriptions of the individual animation elements for any restrictions on what types of
elements can be targets of particular types of animations.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
Specifying the animation target.

19.2.5 Attributes to identify the target attribute or property for an animation

The following attributes identify the target attribute or property for the given target element whose value
changes over time.

<!ENTITY % SVG.AnimationAttribute.attrib

 "attributeName CDATA #REQUIRED
 attributeType CDATA #IMPLIED
 %SVG.AnimationAttribute.extra.attrib;"
>

Attribute definitions:

attributeName = <attributeName>
Specifies the name of the target attribute. An XMLNS prefix may be used to indicate the XML
namespace for the attribute. The prefix will be interpreted in the scope of the current (i.e., the
referencing) animation element.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
Specifying the animation target.

attributeType = "CSS | XML | auto"
Specifies the namespace in which the target attribute and its associated values are defined. The
attribute value is one of the following (values are case-sensitive):
"CSS"

This specifies that the value of "attributeName" is the name of a CSS property defined as
animatable in this specification.

"XML"
This specifies that the value of "attributeName" is the name of an XML attribute defined in the

http://www.w3.org/TR/SVG/animate.html (5 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget

Animation - SVG 1.1 - 20030114

default XML namespace for the target element. If the value for attributeName has an XMLNS
prefix, the implementation must use the associated namespace as defined in the scope of the
target element. The attribute must be defined as animatable in this specification.

"auto"
The implementation should match the attributeName to an attribute for the target element.
The implementation must first search through the list of CSS properties for a matching property
name, and if none is found, search the default XML namespace for the element.

The default value is "auto".
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
Specifying the animation target.

19.2.6 Attributes to control the timing of the animation

The following attributes are common to all animation elements and control the timing of the animation,
including what causes the animation to start and end, whether the animation runs repeatedly, and whether to
retain the end state the animation once the animation ends.

<!ENTITY % SVG.AnimationTiming.attrib

 "begin CDATA #IMPLIED
 dur CDATA #IMPLIED
 end CDATA #IMPLIED
 min CDATA #IMPLIED
 max CDATA #IMPLIED
 restart (always | never | whenNotActive) 'always'
 repeatCount CDATA #IMPLIED
 repeatDur CDATA #IMPLIED
 fill (remove | freeze) 'remove'
 %SVG.AnimationTiming.extra.attrib;"
>

In the syntax specifications that follow, optional white space is indicated as "S", defined as follows:

S ::= (#x20 | #x9 | #xD | #xA)*

Attribute definitions:

begin : begin-value-list
Defines when the element should begin (i.e. become active).
The attribute value is a semicolon separated list of values.

begin-value-list ::= begin-value (S? ";" S? begin-value-list)?

A semicolon separated list of begin values. The interpretation of a list of begin times is detailed
in SMIL Animation's section on "Evaluation of begin and end time lists".

begin-value : (offset-value | syncbase-value | event-value | repeat-value | accessKey-value |
wallclock-sync-value | "indefinite")

Describes the element begin.

offset-value ::= (S? "+" | "-" S?)? (Clock-value)

For SMIL Animation, this describes the element begin as an offset from an implicit syncbase.
For SVG, the implicit syncbase begin is defined to be relative to the document begin. Negative
begin times are entirely valid and easy to compute, as long as there is a resolved document

http://www.w3.org/TR/SVG/animate.html (6 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationTarget
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Timing-EvaluationOfBeginEndTimeLists

Animation - SVG 1.1 - 20030114

begin time.
syncbase-value ::= (Id-value "." ("begin" | "end")) (S? ("+"|"-") S? Clock-value)?

Describes a syncbase and an optional offset from that syncbase. The element begin is defined
relative to the begin or active end of another animation. A syncbase consists of an ID reference
to another animation element followed by either begin or end to identify whether to
synchronize with the beginning or active end of the referenced animation element.

event-value ::= (Id-value ".")? (event-ref) (S? ("+"|"-") S? Clock-value)?
Describes an event and an optional offset that determine the element begin. The animation
begin is defined relative to the time that the event is raised. The list of event-symbols available
for a given event-base element is the list of event attributes available for the given element as
defined by the SVG DTD, with the one difference that the leading 'on' is removed from the event
name (i.e., the animation event name is 'click', not 'onclick'). A list of all events supported by
SVG can be found in Complete list of supported events. Details of event-based timing are
described in SMIL Animation: Unifying Event-based and Scheduled Timing.

repeat-value ::= (Id-value ".")? "repeat(" integer ")" (S? ("+"|"-") S? Clock-value)?
Describes a qualified repeat event. The element begin is defined relative to the time that the
repeat event is raised with the specified iteration value.

accessKey-value ::= "accessKey(" character ")" (S? ("+"|"-") S? Clock-value)?
Describes an accessKey that determines the element begin. The element begin is defined
relative to the time that the accessKey character is input by the user.

"wallclock-sync-value : wallclock(" wallclock-value ")"
Describes the element begin as a real-world clock time. The wallclock time syntax is based
upon syntax defined in [ISO8601].

"indefinite"
The begin of the animation will be determined by a "beginElement()" method call or a hyperlink
targeted to the element.
The animation DOM methods are described in DOM interfaces.
Hyperlink-based timing is described in SMIL Animation: Hyperlinks and timing.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'begin' attribute.

dur : Clock-value | "media" | "indefinite"

Specifies the simple duration.
The attribute value can be either of the following:
Clock-value

Specifies the length of the simple duration in presentation time. Value must be greater than 0.
"media"

Specifies the simple duration as the intrinsic media duration. This is only valid for elements that
define media.
(For SVG's animation elements, if "media" is specified, the attribute will be ignored.)

"indefinite"
Specifies the simple duration as indefinite.

If the animation does not have a dur attribute, the simple duration is indefinite. Note that interpolation
will not work if the simple duration is indefinite (although this may still be useful for 'set' elements).
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'dur'
attribute.

end : end-value-list
Defines an end value for the animation that can constrain the active duration. The attribute value is a
semicolon separated list of values.

end-value-list ::= end-value (S? ";" S? end-value-list)?

A semicolon separated list of end values. The interpretation of a list of end times is detailed

http://www.w3.org/TR/SVG/animate.html (7 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/svgdtd.html
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Unifying
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#HyperlinkSemantics
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#BeginAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#BeginAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DurAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DurAttribute

Animation - SVG 1.1 - 20030114

below.

end-value : (offset-value | syncbase-value | event-value | repeat-value | accessKey-value |
wallclock-sync-value | "indefinite")

Describes the active end of the animation.
A value of "indefinite" specifies that the end of the animation will be determined by a "endElement()"
method call (the animation DOM methods are described in DOM interfaces).
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see description of SMIL
Animation: 'end' attribute.

min : Clock-value | "media"
Specifies the minimum value of the active duration.
The attribute value can be either of the following:
Clock-value

Specifies the length of the minimum value of the active duration, measured in local time.
Value must be greater than 0.

"media"
Specifies the minimum value of the active duration as the intrinsic media duration. This is only
valid for elements that define media. (For SVG's animation elements, if "media" is specified, the
attribute will be ignored.)

The default value for min is "0". This does not constrain the active duration at all.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'min'
attribute.

max : Clock-value | "media"
Specifies the maximum value of the active duration.
The attribute value can be either of the following:
Clock-value

Specifies the length of the maximum value of the active duration, measured in local time.
Value must be greater than 0.

"media"
Specifies the maximum value of the active duration as the intrinsic media duration. This is only
valid for elements that define media. (For SVG's animation elements, if "media" is specified, the
attribute will be ignored.)

There is no default value for max. This does not constrain the active duration at all.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'max'
attribute.

restart : "always" | "whenNotActive" | "never"
always

The animation can be restarted at any time.
This is the default value.

whenNotActive
The animation can only be restarted when it is not active (i.e. after the active end). Attempts to
restart the animation during its active duration are ignored.

never
The element cannot be restarted for the remainder of the current simple duration of the parent
time container. (In the case of SVG, since the parent time container is the SVG document
fragment, then the animation cannot be restarted for the remainder of the document duration.)

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'restart' attribute.

repeatCount : numeric value | "indefinite"
Specifies the number of iterations of the animation function. It can have the following attribute values:

http://www.w3.org/TR/SVG/animate.html (8 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#EndActiveAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#EndActiveAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MinMax
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RestartAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RestartAttribute

Animation - SVG 1.1 - 20030114

numeric value
This is a (base 10) "floating point" numeric value that specifies the number of iterations. It can
include partial iterations expressed as fraction values. A fractional value describes a portion of
the simple duration. Values must be greater than 0.

"indefinite"
The animation is defined to repeat indefinitely (i.e. until the document ends).

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'repeatCount' attribute.

repeatDur : Clock-value | "indefinite"
Specifies the total duration for repeat. It can have the following attribute values:
Clock-value

Specifies the duration in presentation time to repeat the animation function f(t).
"indefinite"

The animation is defined to repeat indefinitely (i.e. until the document ends).
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'repeatDur' attribute.

fill : "freeze" | "remove"
This attribute can have the following values:
freeze

The animation effect F(t) is defined to freeze the effect value at the last value of the active
duration. The animation effect is "frozen" for the remainder of the document duration (or until the
animation is restarted - see SMIL Animation: Restarting animation).

remove
The animation effect is removed (no longer applied) when the active duration of the animation is
over. After the active end of the animation, the animation no longer affects the target (unless the
animation is restarted - see SMIL Animation: Restarting animation).
This is the default value.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'fill'
attribute.

The SMIL Animation [SMILANIM] specification defines the detailed processing rules associated with the
above attributes. Except for any SVG-specific rules explicitly mentioned in this specification, the SMIL
Animation [SMILANIM] specification is the normative definition of the processing rules for the above
attributes.

Clock values

Clock values have the same syntax as in SMIL Animation [SMILANIM], which is repeated here:

Clock-val ::= Full-clock-val | Partial-clock-val
 | Timecount-val
Full-clock-val ::= Hours ":" Minutes ":" Seconds ("." Fraction)?
Partial-clock-val ::= Minutes ":" Seconds ("." Fraction)?
Timecount-val ::= Timecount ("." Fraction)? (Metric)?
Metric ::= "h" | "min" | "s" | "ms"
Hours ::= DIGIT+; any positive number
Minutes ::= 2DIGIT; range from 00 to 59
Seconds ::= 2DIGIT; range from 00 to 59
Fraction ::= DIGIT+
Timecount ::= DIGIT+
2DIGIT ::= DIGIT DIGIT
DIGIT ::= [0-9]

http://www.w3.org/TR/SVG/animate.html (9 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#SpecifyingAnimationFunction
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatCountAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatCountAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatDurAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#RepeatDurAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimationModel
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FillAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FillAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/

Animation - SVG 1.1 - 20030114

For Timecount values, the default metric suffix is "s" (for seconds). No embedded white space is allowed in
clock values, although leading and trailing white space characters will be ignored.

Clock values describe presentation time.

The following are examples of legal clock values:

● Full clock values:
 02:30:03 = 2 hours, 30 minutes and 3 seconds
 50:00:10.25 = 50 hours, 10 seconds and 250 milliseconds

● Partial clock value:
 02:33 = 2 minutes and 33 seconds
 00:10.5 = 10.5 seconds = 10 seconds and 500 milliseconds

● Timecount values:
 3.2h = 3.2 hours = 3 hours and 12 minutes
 45min = 45 minutes
 30s = 30 seconds
 5ms = 5 milliseconds
 12.467 = 12 seconds and 467 milliseconds

Fractional values are just (base 10) floating point definitions of seconds. Thus:

00.5s = 500 milliseconds
00:00.005 = 5 milliseconds

19.2.7 Attributes that define animation values over time

The following attributes are common to elements 'animate', 'animateMotion', 'animateColor' and
'animateTransform'. These attributes define the values that are assigned to the target attribute or property
over time. The attributes below provide control over the relative timing of keyframes and the interpolation
method between discrete values.

<!ENTITY % SVG.AnimationValue.attrib

 "calcMode (discrete | linear | paced | spline) 'linear'
 values CDATA #IMPLIED
 keyTimes CDATA #IMPLIED
 keySplines CDATA #IMPLIED
 from CDATA #IMPLIED
 to CDATA #IMPLIED
 by CDATA #IMPLIED
 %SVG.AnimationValue.extra.attrib;"
>

Attribute definitions:

calcMode = "discrete | linear | paced | spline"
Specifies the interpolation mode for the animation. This can take any of the following values. The
default mode is "linear", however if the attribute does not support linear interpolation (e.g. for strings),
the calcMode attribute is ignored and discrete interpolation is used.
discrete

This specifies that the animation function will jump from one value to the next without any

http://www.w3.org/TR/SVG/animate.html (10 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

interpolation.
linear

Simple linear interpolation between values is used to calculate the animation function. Except
for 'animateMotion', this is the default calcMode.

paced
Defines interpolation to produce an even pace of change across the animation. This is only
supported for values that define a linear numeric range, and for which some notion of "distance"
between points can be calculated (e.g. position, width, height, etc.). If "paced" is specified, any
keyTimes or keySplines will be ignored. For 'animateMotion', this is the default calcMode.

spline
Interpolates from one value in the values list to the next according to a time function defined
by a cubic Bézier spline. The points of the spline are defined in the keyTimes attribute, and the
control points for each interval are defined in the keySplines attribute.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'calcMode' attribute.

values = "<list>"
A semicolon-separated list of one or more values. Vector-valued attributes are supported using the
vector syntax of the attributeType domain. Except for any SVG-specific rules explicitly mentioned
in this specification, the normative definition for this attribute is the SMIL Animation [SMILANIM]
specification. In particular, see SMIL Animation: 'values' attribute.

keyTimes = "<list>"
A semicolon-separated list of time values used to control the pacing of the animation. Each time in the
list corresponds to a value in the values attribute list, and defines when the value is used in the
animation function. Each time value in the keyTimes list is specified as a floating point value between
0 and 1 (inclusive), representing a proportional offset into the simple duration of the animation
element.

If a list of keyTimes is specified, there must be exactly as many values in the keyTimes list as in the
values list.

Each successive time value must be greater than or equal to the preceding time value.

The keyTimes list semantics depends upon the interpolation mode:

❍ For linear and spline animation, the first time value in the list must be 0, and the last time value
in the list must be 1. The keyTime associated with each value defines when the value is set;
values are interpolated between the keyTimes.

❍ For discrete animation, the first time value in the list must be 0. The time associated with each
value defines when the value is set; the animation function uses that value until the next time
defined in keyTimes.

If the interpolation mode is "paced", the keyTimes attribute is ignored.

If there are any errors in the keyTimes specification (bad values, too many or too few values), the
document fragment is in error (see error processing).

If the simple duration is indefinite, any keyTimes specification will be ignored.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'keyTimes' attribute.

keySplines = "<list>"
A set of Bézier control points associated with the keyTimes list, defining a cubic Bézier function that
controls interval pacing. The attribute value is a semicolon separated list of control point descriptions.
Each control point description is a set of four values: x1 y1 x2 y2, describing the Bézier control

http://www.w3.org/TR/SVG/animate.html (11 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#CalcModeAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#CalcModeAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ValuesAttribute
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeyTimesAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeyTimesAttribute

Animation - SVG 1.1 - 20030114

points for one time segment. The keyTimes values that define the associated segment are the Bézier
"anchor points", and the keySplines values are the control points. Thus, there must be one fewer
sets of control points than there are keyTimes.

The values must all be in the range 0 to 1.

This attribute is ignored unless the calcMode is set to "spline".

If there are any errors in the keySplines specification (bad values, too many or too few values), the
document fragment is in error (see error processing).

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'keySplines' attribute.

from = "<value>"
Specifies the starting value of the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'from'
attribute.

to = "<value>"
Specifies the ending value of the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'to'
attribute.

by = "<value>"
Specifies a relative offset value for the animation.
Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'by'
attribute.

The SMIL Animation [SMILANIM] specification defines the detailed processing rules associated with the
above attributes. Except for any SVG-specific rules explicitly mentioned in this specification, the SMIL
Animation [SMILANIM] specification is the normative definition of the processing rules for the above
attributes.

The animation values specified in the animation element must be legal values for the specified attribute.
Leading and trailing white space, and white space before and after semicolon separators, will be ignored.

All values specified must be legal values for the specified attribute (as defined in the associated namespace).
If any values are not legal, the document fragment is in error (see error processing).

If a list of values is used, the animation will apply the values in order over the course of the animation. If a list
of values is specified, any from, to and by attribute values are ignored.

The processing rules for the variants of from/by/to animations are described in Animation function values.

The following figure illustrates the interpretation of the keySplines attribute. Each diagram illustrates the
effect of keySplines settings for a single interval (i.e. between the associated pairs of values in the
keyTimes and values lists.). The horizontal axis can be thought of as the input value for the unit progress
of interpolation within the interval - i.e. the pace with which interpolation proceeds along the given interval.
The vertical axis is the resulting value for the unit progress, yielded by the keySplines function. Another
way of describing this is that the horizontal axis is the input unit time for the interval, and the vertical axis is
the output unit time. See also the section Timing and real-world clock times.

http://www.w3.org/TR/SVG/animate.html (12 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeySplinesAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#KeySplinesAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ToAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ToAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ByAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#ByAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AnimFuncValues
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#TimingAndRealWorldClockTime

Animation - SVG 1.1 - 20030114

keySplines="0 0 1 1" (the
default)

keySplines=".5 0 .5 1"

keySplines="0 .75 .25 1"

keySplines="1 0 .25 .25"

Examples of keySplines

To illustrate the calculations, consider the simple example:

<animate dur="4s" values="10; 20" keyTimes="0; 1"
 calcMode="spline" keySplines={as in table} />

Using the keySplines values for each of the four cases above, the approximate interpolated values as the
animation proceeds are:

keySplines values Initial value After 1s After 2s After 3s Final value

0 0 1 1 10.0 12.5 15.0 17.5 20.0

.5 0 .5 1 10.0 11.0 15.0 19.0 20.0

0 .75 .25 1 10.0 18.0 19.3 19.8 20.0

1 0 .25 .25 10.0 10.1 10.6 16.9 20.0

For a formal definition of Bézier spline calculation, see [FOLEY-VANDAM].

19.2.8 Attributes that control whether animations are additive

It is frequently useful to define animation as an offset or delta to an attribute's value, rather than as absolute
values. A simple "grow" animation can increase the width of an object by 10 pixels:

<rect width="20px" ...>

http://www.w3.org/TR/SVG/animate.html (13 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/refs.html#ref-FOLEY-VANDAM

Animation - SVG 1.1 - 20030114

 <animate attributeName="width" from="0px" to="10px" dur="10s"
 additive="sum"/>
</rect>

It is frequently useful for repeated animations to build upon the previous results, accumulating with each
interation. The following example causes the rectangle to continue to grow with each repeat of the animation:

<rect width="20px" ...>
 <animate attributeName="width" from="0px" to="10px" dur="10s"
 additive="sum" accumulate="sum" repeatCount="5"/>
</rect>

At the end of the first repetition, the rectangle has a width of 30 pixels. At the end of the second repetition,
the rectangle has a width of 40 pixels. At the end of the fifth repetition, the rectangle has a width of 70 pixels.

For more information about additive animations, see SMIL Animation: Additive animation. For more
information on cumulative animations, see SMIL Animation: Controlling behavior of repeating animation -
Cumulative animation.

The following attributes are common to elements 'animate', 'animateMotion', 'animateColor' and
'animateTransform'.

<!ENTITY % SVG.AnimationAddtion.attrib

 "additive (replace | sum) 'replace'
 accumulate (none | sum) 'none'
 %SVG.AnimationAddtion.extra.attrib;"
>

Attribute definitions:

additive = "replace | sum"
Controls whether or not the animation is additive.
sum

Specifies that the animation will add to the underlying value of the attribute and other lower
priority animations.

replace
Specifies that the animation will override the underlying value of the attribute and other lower
priority animations. This is the default, however the behavior is also affected by the animation
value attributes by and to, as described in SMIL Animation: How from, to and by attributes
affect additive behavior.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'additive' attribute.

accumulate = "none | sum"
Controls whether or not the animation is cumulative.
sum

Specifies that each repeat iteration after the first builds upon the last value of the previous
iteration.

none
Specifies that repeat iterations are not cumulative. This is the default.

This attribute is ignored if the target attribute value does not support addition, or if the animation

http://www.w3.org/TR/SVG/animate.html (14 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AdditiveAnim
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Accumulate
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Accumulate
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromToByAndAdditive
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#FromToByAndAdditive
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AdditiveAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AdditiveAttribute

Animation - SVG 1.1 - 20030114

element does not repeat.

Cumulative animation is not defined for "to animation".

This attribute will be ignored if the animation function is specified with only the to attribute.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for
this attribute is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation:
'accumulate' attribute.

19.2.9 Inheritance

SVG allows both attributes and properties to be animated. If a given attribute or property is inheritable by
descendants, then animations on a parent element such as a 'g' element has the effect of propagating the
attribute or property animation values to descendant elements as the animation proceeds; thus, descendant
elements can inherit animated attributes and properties from their ancestors.

19.2.10 The 'animate' element

The 'animate' element is used to animate a single attribute or property over time. For example, to make a
rectangle repeatedly fade away over 5 seconds, you can specify:

<rect>
 <animate attributeType="CSS" attributeName="opacity"
 from="1" to="0" dur="5s" repeatCount="indefinite" />
</rect>

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
element is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'animate'
element.

<!ENTITY % SVG.animate.extra.content "" >
<!ENTITY % SVG.animate.element "INCLUDE" >
<![%SVG.animate.element;[
<!ENTITY % SVG.animate.content
 "(%SVG.Description.class; %SVG.animate.extra.content;)\

*"
>
<!ELEMENT %SVG.animate.qname; %SVG.animate.content; >

<!-- end of SVG.animate.element -->]]>
<!ENTITY % SVG.animate.attlist "INCLUDE" >
<![%SVG.animate.attlist;[
<!ATTLIST %SVG.animate.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.AnimationEvents.attrib;

 %SVG.External.attrib;

 %SVG.Animation.attrib;

 %SVG.AnimationAttribute.attrib;

 %SVG.AnimationTiming.attrib;

 %SVG.AnimationValue.attrib;

 %SVG.AnimationAddtion.attrib;

>

http://www.w3.org/TR/SVG/animate.html (15 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AccumulateAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#AccumulateAttribute
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateElement
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateElement

Animation - SVG 1.1 - 20030114

For a list of attributes and properties that can be animated using the 'animate' element, see Elements,
attributes and properties that can be animated.

19.2.11 The 'set' element

The 'set' element provides a simple means of just setting the value of an attribute for a specified duration. It
supports all attribute types, including those that cannot reasonably be interpolated, such as string and
boolean values. The 'set' element is non-additive. The additive and accumulate attributes are not allowed,
and will be ignored if specified.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
element is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'set' element.

<!ENTITY % SVG.set.extra.content "" >
<!ENTITY % SVG.set.element "INCLUDE" >
<![%SVG.set.element;[
<!ENTITY % SVG.set.content
 "(%SVG.Description.class; %SVG.set.extra.content;)*"

>
<!ELEMENT %SVG.set.qname; %SVG.set.content; >

<!-- end of SVG.set.element -->]]>
<!ENTITY % SVG.set.attlist "INCLUDE" >
<![%SVG.set.attlist;[
<!ATTLIST %SVG.set.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.AnimationEvents.attrib;

 %SVG.External.attrib;

 %SVG.Animation.attrib;

 %SVG.AnimationAttribute.attrib;

 %SVG.AnimationTiming.attrib;

 to CDATA #IMPLIED
>

Attribute definitions:

to = "<value>"
Specifies the value for the attribute during the duration of the 'set' element. The argument value must
match the attribute type.

For a list of attributes and properties that can be animated using the 'set' element, see Elements, attributes
and properties that can be animated.

19.2.12 The 'animateMotion' element

The 'animateMotion' element causes a referenced element to move along a motion path.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
element is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'animateMotion'

http://www.w3.org/TR/SVG/animate.html (16 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#setElement
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateMotionElement

Animation - SVG 1.1 - 20030114

element.

<!ENTITY % SVG.animateMotion.extra.content "" >
<!ENTITY % SVG.animateMotion.element "INCLUDE" >
<![%SVG.animateMotion.element;[
<!ENTITY % SVG.animateMotion.content
 "((%SVG.Description.class;)*, %SVG.mpath.qname;?

 %SVG.animateMotion.extra.content;)"
>
<!ELEMENT %SVG.animateMotion.qname; %SVG.animateMot\

ion.content; >
<!-- end of SVG.animateMotion.element -->]]>
<!ENTITY % SVG.animateMotion.attlist "INCLUDE" >
<![%SVG.animateMotion.attlist;[
<!ATTLIST %SVG.animateMotion.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.AnimationEvents.attrib;

 %SVG.External.attrib;

 %SVG.Animation.attrib;

 %SVG.AnimationTiming.attrib;

 %SVG.AnimationAddtion.attrib;

 calcMode (discrete | linear | paced | spline) 'paced'
 values CDATA #IMPLIED
 keyTimes CDATA #IMPLIED
 keySplines CDATA #IMPLIED
 from CDATA #IMPLIED
 to CDATA #IMPLIED
 by CDATA #IMPLIED
 path CDATA #IMPLIED
 keyPoints CDATA #IMPLIED
 rotate CDATA #IMPLIED
 origin CDATA #IMPLIED
>

Attribute definitions:

calcMode = "discrete | linear | paced | spline"
Specifies the interpolation mode for the animation. Refer to general description of the calcMode
attribute above. The only difference is that the default value for the calcMode for 'animateMotion' is
paced. See SMIL Animation: 'calcMode' attribute for 'animateMotion'.

path = "<path-data>"
The motion path, expressed in the same format and interpreted the same way as the d= attribute on
the 'path' element. The effect of a motion path animation is to add a supplemental transformation
matrix onto the CTM for the referenced object which causes a translation along the x- and y-axes of
the current user coordinate system by the computed X and Y values computed over time.

keyPoints = "<list-of-numbers>"
keyPoints takes a semicolon-separated list of floating point values between 0 and 1 and indicates how
far along the motion path the object shall move at the moment in time specified by corresponding
keyTimes value. Distance calculations use the user agent's distance along the path algorithm. Each
progress value in the list corresponds to a value in the keyTimes attribute list.
If a list of keyPoints is specified, there must be exactly as many values in the keyPoints list as in
the keyTimes list.
If there are any errors in the keyPoints specification (bad values, too many or too few values), then
the document is in error (see Error processing).

http://www.w3.org/TR/SVG/animate.html (17 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateMotionElement
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionCalcModeAttribute
http://www.w3.org/TR/SVG/implnote.html#ErrorProcessing

Animation - SVG 1.1 - 20030114

rotate = "<angle> | auto | auto-reverse"
auto indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent
vector) of the motion path. auto-reverse indicates that the object is rotated over time by the angle of the
direction (i.e., directional tangent vector) of the motion path plus 180 degrees. An actual angle value
can also be given, which represents an angle relative to the x-axis of current user coordinate system.
The rotate attribute adds a supplemental transformation matrix onto the CTM to apply a rotation
transformation about the origin of the current user coordinate system. The rotation transformation is
applied after the supplemental translation transformation that is computed due to the path attribute.
The default value is 0.

origin = "default"
The origin attribute is defined in the SMIL Animation specification [SMILANIM-ATTR-ORIGIN]. It has
no effect in SVG.

<!ENTITY % SVG.mpath.extra.content "" >
<!ENTITY % SVG.mpath.element "INCLUDE" >
<![%SVG.mpath.element;[
<!ENTITY % SVG.mpath.content
 "(%SVG.Description.class; %SVG.mpath.extra.content;)*"

>
<!ELEMENT %SVG.mpath.qname; %SVG.mpath.content; >

<!-- end of SVG.mpath.element -->]]>
<!ENTITY % SVG.mpath.attlist "INCLUDE" >
<![%SVG.mpath.attlist;[
<!ATTLIST %SVG.mpath.qname;

 %SVG.Core.attrib;

 %SVG.XLinkRequired.attrib;

 %SVG.External.attrib;

>

Attribute definitions:

xlink:href = "<uri>"
A URI reference to the 'path' element which defines the motion path.
Animatable: no.

For 'animateMotion', the specified values for from, by, to and values consists of x, y coordinate pairs, with a
single comma and/or white space separating the x coordinate from the y coordinate. For example,
from="33,15" specifies an x coordinate value of 33 and a y coordinate value of 15.

If provided, the values attribute must consists of a list of x, y coordinate pairs. Coordinate values are
separated by at least one white space character or a comma. Additional white space around the separator is
allowed. For example, values="10,20;30,20;30,40" or values="10mm,20mm;30mm,20mm;30mm,40mm". Each
coordinate represents a length. Attributes from, by, to and values specify a shape on the current canvas
which represents the motion path.

Two options are available which allow definition of a motion path using any of SVG's path data commands:

● the path attribute defines a motion path directly on 'animateMotion' element using any of SVG's path
data commands.

● the 'mpath' sub-element provides the ability to reference an external 'path' element as the definition of
the motion path.

http://www.w3.org/TR/SVG/animate.html (18 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#MotionOriginAttribute

Animation - SVG 1.1 - 20030114

Note that SVG's path data commands can only contain values in user space, whereas from, by, to and
values can specify coordinates in user space or using unit identifiers. See Units.

The various (x,y) points of the shape provide a supplemental transformation matrix onto the CTM for the
referenced object which causes a translation along the x- and y-axes of the current user coordinate system
by the (x,y) values of the shape computed over time. Thus, the referenced object is translated over time by
the offset of the motion path relative to the origin of the current user coordinate system. The supplemental
transformation is applied on top of any transformations due to the target element's transform attribute or any
animations on that attribute due to 'animateTransform' elements on the target element.

The additive and accumulate attributes apply to 'animateMotion' elements. Multiple 'animateMotion' elements
all simultaneously referencing the same target element can be additive with respect to each other; however,
the transformations which result from the 'animateMotion' elements are always supplemental to any
transformations due to the target element's transform attribute or any 'animateTransform' elements.

The default calculation mode (calcMode) for animateMotion is "paced". This will produce constant velocity
motion along the specified path. Note that while animateMotion elements can be additive, it is important to
observe that the addition of two or more "paced" (constant velocity) animations might not result in a
combined motion animation with constant velocity.

When a path is combined with "discrete", "linear" or "spline" calcMode settings, and if attribute keyPoints is
not provided, the number of values is defined to be the number of points defined by the path, unless there
are "move to" commands within the path. A "move to" command within the path (i.e. other than at the
beginning of the path description) A "move to" command does not count as an additional point when dividing
up the duration, or when associating keyTimes, keySplines and keyPoints values. When a path is
combined with a "paced" calcMode setting, all "move to" commands are considered to have 0 length (i.e. they
always happen instantaneously), and is not considered in computing the pacing.

For more flexibility in controlling the velocity along the motion path, the keyPoints attribute provides the ability
to specify the progress along the motion path for each of the keyTimes specified values. If specified,
keyPoints causes keyTimes to apply to the values in keyPoints rather than the points specified in the values
attribute array or the points on the path attribute.

The override rules for 'animateMotion are as follows. Regarding the definition of the motion path, the 'mpath'
element overrides the the path attribute, which overrides values, which overrides from/by/to. Regarding
determining the points which correspond to the keyTimes attributes, the keyPoints attribute overrides path,
which overrides values, which overrides from/by/to.

At any time t within a motion path animation of duration dur, the computed coordinate (x,y) along the motion
path is determined by finding the point (x,y) which is t/dur distance along the motion path using the user
agent's distance along the path algorithm.

The following example demonstrates the supplemental transformation matrices that are computed during a
motion path animation.

Example animMotion01 shows a triangle moving along a motion path.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="5cm" height="3cm" viewBox="0 0 500 300"
 xmlns="http://www.w3.org/2000/svg" version="1.1"
 xmlns:xlink="http://www.w3.org/1999/xlink" >
 <desc>Example animMotion01 - demonstrate motion animation computations</desc>

http://www.w3.org/TR/SVG/animate.html (19 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

 <rect x="1" y="1" width="498" height="298"
 fill="none" stroke="blue" stroke-width="2" />
 <!-- Draw the outline of the motion path in blue, along
 with three small circles at the start, middle and end. -->
 <path id="path1" d="M100,250 C 100,50 400,50 400,250"
 fill="none" stroke="blue" stroke-width="7.06" />
 <circle cx="100" cy="250" r="17.64" fill="blue" />
 <circle cx="250" cy="100" r="17.64" fill="blue" />
 <circle cx="400" cy="250" r="17.64" fill="blue" />
 <!-- Here is a triangle which will be moved about the motion path.
 It is defined with an upright orientation with the base of
 the triangle centered horizontally just above the origin. -->
 <path d="M-25,-12.5 L25,-12.5 L 0,-87.5 z"
 fill="yellow" stroke="red" stroke-width="7.06" >
 <!-- Define the motion path animation -->
 <animateMotion dur="6s" repeatCount="indefinite" rotate="auto" >
 <mpath xlink:href="#path1"/>
 </animateMotion>
 </path>
</svg>

At zero seconds

At three seconds

At six seconds

Example animMotion01

View this example as SVG (SVG-enabled browsers only)

The following table shows the supplemental transformation matrices that are applied to achieve the effect of
the motion path animation.

 After 0s After 3s After 6s

Supplemental transform
due to movement
along motion path

translate(100,250) translate(250,100) translate(400,250)

Supplemental transform
due to
rotate="auto"

rotate(-90) rotate(0) rotate(90)

For a list of elements that can be animated using the 'animateMotion' element, see Elements, attributes and
properties that can be animated.

19.2.13 The 'animateColor' element

The 'animateColor' element specifies a color transformation over time.

Except for any SVG-specific rules explicitly mentioned in this specification, the normative definition for this
element is the SMIL Animation [SMILANIM] specification. In particular, see SMIL Animation: 'animateColor'

http://www.w3.org/TR/SVG/animate.html (20 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/images/animate/animMotion01.svg
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateColorElement

Animation - SVG 1.1 - 20030114

element.

<!ENTITY % SVG.animateColor.extra.content "" >
<!ENTITY % SVG.animateColor.element "INCLUDE" >
<![%SVG.animateColor.element;[
<!ENTITY % SVG.animateColor.content
 "(%SVG.Description.class; %SVG.animateColor.extra.conte\

nt;)*"
>
<!ELEMENT %SVG.animateColor.qname; %SVG.animateColor\

.content; >
<!-- end of SVG.animateColor.element -->]]>
<!ENTITY % SVG.animateColor.attlist "INCLUDE" >
<![%SVG.animateColor.attlist;[
<!ATTLIST %SVG.animateColor.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.AnimationEvents.attrib;

 %SVG.External.attrib;

 %SVG.Animation.attrib;

 %SVG.AnimationAttribute.attrib;

 %SVG.AnimationTiming.attrib;

 %SVG.AnimationValue.attrib;

 %SVG.AnimationAddtion.attrib;

>

The from, by and to attributes take color values, where each color value is expressed using the following
syntax (the same syntax as used in SVG's properties that can take color values):

<color> [icc-color(<name>[,<icccolorvalue>]*)]

The values attribute for the 'animateColor' element consists of a semicolon-separated list of color values, with
each color value expressed in the above syntax.

Out of range color values can be provided, but user agent processing will be implementation dependent.
User agents should clamp color values to allow color range values as late as possible, but note that system
differences might preclude consistent behavior across different systems.

The 'color-interpolation' property applies to color interpolations that result from 'animateColor' animations.

For a list of attributes and properties that can be animated using the 'animateColor' element, see Elements,
attributes and properties that can be animated.

19.2.14 The 'animateTransform' element

The 'animateTransform' element animates a transformation attribute on a target element, thereby allowing
animations to control translation, scaling, rotation and/or skewing.

http://www.w3.org/TR/SVG/animate.html (21 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#animateColorElement

Animation - SVG 1.1 - 20030114

<!ENTITY % SVG.animateTransform.extra.content "" >
<!ENTITY % SVG.animateTransform.element "INCLUDE" >
<![%SVG.animateTransform.element;[
<!ENTITY % SVG.animateTransform.content
 "(%SVG.Description.class; %SVG.animateTransform.extra.c\

ontent;)*"
>
<!ELEMENT %SVG.animateTransform.qname; %SVG.anim\

ateTransform.content; >
<!-- end of SVG.animateTransform.element -->]]>
<!ENTITY % SVG.animateTransform.attlist "INCLUDE" >
<![%SVG.animateTransform.attlist;[
<!ATTLIST %SVG.animateTransform.qname;

 %SVG.Core.attrib;

 %SVG.Conditional.attrib;

 %SVG.AnimationEvents.attrib;

 %SVG.External.attrib;

 %SVG.Animation.attrib;

 %SVG.AnimationAttribute.attrib;

 %SVG.AnimationTiming.attrib;

 %SVG.AnimationValue.attrib;

 %SVG.AnimationAddtion.attrib;

 type (translate | scale | rotate | skewX | skewY) 'translate'
>

Attribute definitions:

type = "translate | scale | rotate | skewX | skewY"
Indicates the type of transformation which is to have its values change over time.

The from, by and to attributes take a value expressed using the same syntax that is available for the given
transformation type:

● For a type="translate", each individual value is expressed as <tx> [,<ty>].
● For a type="scale", each individual value is expressed as <sx> [,<sy>].
● For a type="rotate", each individual value is expressed as <rotate-angle> [<cx> <cy>].
● For a type="skewX" and type="skewY", each individual value is expressed as <skew-angle>.

(See The transform attribute.)

The values attribute for the 'animateTransform' element consists of a semicolon-separated list of values,
where each individual value is expressed as described above for from, by and to.

If calcMode has the value paced, then a total "distance" for each component of the transformation is
calculated (e.g., for a translate operation, a total distance is calculated for both tx and ty) consisting of the
sum of the absolute values of the differences between each pair of values, and the animation runs to
produce a constant distance movement for each individual component.

When an animation is active, the effect of non-additive 'animateTransform' (i.e., additive="replace") is to
replace the given attribute's value with the transformation defined by the 'animateTransform'. The effect of
additive (i.e., additive="sum") is to post-multiply the transformation matrix corresponding to the
transformation defined by this 'animateTransform'. To illustrate:

http://www.w3.org/TR/SVG/animate.html (22 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

<rect transform="skewX(30)"...>
 <animateTransform attributeName="transform" attributeType="XML"
 type="rotate" from="0" to="90" dur="5s"
 additive="replace" fill="freeze"/>
 <animateTransform attributeName="transform" attributeType="XML"
 type="scale" from="1" to="2" dur="5s"
 additive="replace" fill="freeze"/>
</rect>

In the code snippet above, because the both animations have additive="replace", the first animation
overrides the transformation on the rectangle itself and the second animation overrides the transformation
from the first animation; therefore, at time 5 seconds, the visual result of the above two animations would be
equivalent to the following static rectangle:

<rect transform="scale(2)" ... />

whereas in the following example:

<rect transform="skewX(30)"...>
 <animateTransform attributeName="transform" attributeType="XML"
 type="rotate" from="0" to="90" dur="5s"
 additive="sum" fill="freeze"/>
 <animateTransform attributeName="transform" attributeType="XML"
 type="scale" from="1" to="2" dur="5s"
 additive="sum" fill="freeze"/>
</rect>

In this code snippet, because the both animations have additive="sum", the first animation post-multiplies its
transformation to any transformations on the rectangle itself and the second animation post-multiplies its
transformation to any transformation from the first animation; therefore, at time 5 seconds, the visual result of
the above two animations would be equivalent to the following static rectangle:

<rect transform="skewX(30) rotate(90) scale(2)" ... />

For a list of attributes and properties that can be animated using the 'animateTransform' element, see
Elements, attributes and properties that can be animated.

19.2.15 Elements, attributes and properties that can be animated

The following lists all of the elements which can be animated by an 'animateMotion' element:

● 'g'
● 'defs'
● 'use'
● 'image'
● 'switch'
● 'path'
● 'rect'
● 'circle'
● 'ellipse'
● 'line'
● 'polyline'
● 'polygon'
● 'text'
● 'clipPath'

http://www.w3.org/TR/SVG/animate.html (23 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

● 'mask'
● 'a'
● 'foreignObject'

Each attribute or property within this specification indicates whether or not it can be animated by SVG's
animation elements. Animatable attributes and properties are designated as follows:

 Animatable: yes.

whereas attributes and properties that cannot be animated are designated:

 Animatable: no.

SVG has a defined set of basic data types for its various supported attributes and properties. For those
attributes and properties that can be animated, the following table indicates which animation elements can be
used to animate each of the basic data types. If a given attribute or property can take values of keywords
(which are not additive) or numeric values (which are additive), then additive animations are possible if the
subsequent animation uses a numeric value even if the base animation uses a keyword value; however, if
the subsequent animation uses a keyword value, additive animation is not possible.

Data type Additive? 'animate' 'set'
'animate

Color'
'animate

Transform' Notes

<angle> yes yes yes no no

<color> yes yes yes yes no
Only RGB color values are
additive.

<coordinate> yes yes yes no no

<frequency> no no no no no

<integer> yes yes yes no no

<length> yes yes yes no no

<list of xxx> no yes yes no no

<number> yes yes yes no no

<paint> yes yes yes yes no
Only RGB color values are
additive.

<percentage> yes yes yes no no

<time> no no no no no

<transform-list> yes no no no yes

Additive means that a
transformation is post-
multiplied to the base set of
transformations.

<uri> no yes yes no no

All other data types used
in animatable attributes
and properties

no yes yes no no

Any deviation from the above table or other special note about the animation capabilities of a particular
attribute or property is included in the section of the specification where the given attribute or property is
defined.

19.3 Animation using the SVG DOM

http://www.w3.org/TR/SVG/animate.html (24 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Animation - SVG 1.1 - 20030114

Example dom01 shows a simple animation using the DOM.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="4cm" height="2cm" viewBox="0 0 400 200"
 xmlns="http://www.w3.org/2000/svg"
 onload="StartAnimation(evt)" version="1.1">
 <script type="text/ecmascript"><![CDATA[
 var timevalue = 0;
 var timer_increment = 50;
 var max_time = 5000;
 var text_element;
 function StartAnimation(evt) {
 text_element = evt.target.ownerDocument.getElementById("TextElement");
 ShowAndGrowElement();
 }
 function ShowAndGrowElement() {
 timevalue = timevalue + timer_increment;
 if (timevalue > max_time)
 return;
 // Scale the text string gradually until it is 20 times larger
 scalefactor = (timevalue * 20.) / max_time;
 text_element.setAttribute("transform", "scale(" + scalefactor + ")");
 // Make the string more opaque
 opacityfactor = timevalue / max_time;
 text_element.setAttribute("opacity", opacityfactor);
 // Call ShowAndGrowElement again <timer_increment> milliseconds later.
 setTimeout("ShowAndGrowElement()", timer_increment)
 }
 window.ShowAndGrowElement = ShowAndGrowElement
]]></script>
 <rect x="1" y="1" width="398" height="198"
 fill="none" stroke="blue" stroke-width="2"/>
 <g transform="translate(50,150)" fill="red" font-size="7">
 <text id="TextElement">SVG</text>
 </g>
</svg>

At zero seconds

At 2.5 seconds

At five seconds

Example dom01

View this example as SVG (SVG-enabled browsers only)

The above SVG file contains a single graphics element, a text string that says "SVG". The animation loops
for 5 seconds. The text string starts out small and transparent and grows to be large and opaque. Here is an
explanation of how this example works:

● The onload="StartAnimation(evt)" attribute indicates that, once the document has been fully
loaded and processed, invoke ECMAScript function StartAnimation.

● The 'script' element defines the ECMAScript which makes the animation happen. The

http://www.w3.org/TR/SVG/animate.html (25 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/images/animate/dom01.svg

Animation - SVG 1.1 - 20030114

StartAnimation() function is only called once to give a value to global variable text_element
and to make the initial call to ShowAndGrowElement(). ShowAndGrowElement() is called every
50 milliseconds and resets the transform and style attributes on the text element to new values
each time it is called. At the end of ShowAndGrowElement, the function tells the ECMAScript engine
to call itself again after 50 more milliseconds.

● The 'g' element shifts the coordinate system so that the origin is shifted toward the lower-left of the
viewing area. It also defines the fill color and font-size to use when drawing the text string.

● The 'text' element contains the text string and is the element whose attributes get changed during the
animation.

If scripts are modifying the same attributes or properties that are being animated by SVG's animation
elements, the scripts modify the base value for the animation. If a base value is modified while an animation
element is animating the corresponding attribute or property, the animations are required to adjust
dynamically to the new base value.

If a script is modifying a property on the override style sheet at the same time that an animation element is
animating that property, the result is implementation-dependent; thus, it is recommended that this be avoided.

19.4 Animation Module

Elements Attributes Content Model

animate

Core.attrib, Conditional.attrib, External.attrib,
AnimationEvents.attrib, Animation.attrib, AnimationAttribute.
attrib, AnimationTiming.attrib, AnimationValue.attrib,
AnimationAddtion.attrib

(Description.class)

set
Core.attrib, Conditional.attrib, External.attrib,
AnimationEvents.attrib, Animation.attrib, AnimationAttribute.
attrib, AnimationTiming.attrib, to

(Description.class)

animateMotion

Core.attrib, Conditional.attrib, External.attrib,
AnimationEvents.attrib, Animation.attrib, AnimationTiming.
attrib, AnimationAddtion.attrib, AnimationValue.attrib, path,
keyPoints, rotate, origin

(Description.class | mpath)

animateTransform

Core.attrib, Conditional.attrib, External.attrib,
AnimationEvents.attrib, Animation.attrib, AnimationAttribute.
attrib, AnimationTiming.attrib, AnimationValue.attrib,
AnimationAddtion.attrib, type

(Description.class)

animateColor

Core.attrib, Conditional.attrib, External.attrib,
AnimationEvents.attrib, Animation.attrib, AnimationAttribute.
attrib, AnimationTiming.attrib, AnimationValue.attrib,
AnimationAddtion.attrib

(Description.class)

mpath Core.attrib, XLinkRequired.attrib, External.attrib (Description.class)

19.4.1 Animation Content Set

The Animation Module defines the Animation.class content set.

Content Set Name Elements in Content Set

Animation.class animate, animateColor, animateTransform, animateMotion, set

19.4.2 Animation Attribute Sets

http://www.w3.org/TR/SVG/animate.html (26 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

The Animation Module defines the Animation.attrib, AnimationAttribute.attrib, AnimationTiming.attrib,
AnimationValue.attrib and AnimationAddtion.attrib attribute sets.

Collection Name Attributes in Collection

Animation.attrib XLink.attrib

AnimationAttribute.attrib attributeName, attributeType

AnimationTiming.attrib begin, dur, end, min, max, restart, repeatCount, repeatDur, fill

AnimationValue.attrib calcMode, values, keyTimes, keySplines, from, to, by

AnimationAddtion.attrib additive, accumulate

19.5 DOM interfaces

The following two interfaces are from SMIL Animation. They are included here for easy reference:

Interface ElementTimeControl

The ElementTimeControl interface, part of the org.w3c.dom.smil module and defined in SMIL Animation:
Supported interfaces, defines common methods for elements which define animation behaviors compatible
with SMIL Animation.

Calling beginElement() causes the animation to begin in the same way that an animation with event-
based begin timing begins. The effective begin time is the current presentation time at the time of the DOM
method call. Note that beginElement() is subject to the restart attribute in the same manner that event-
based begin timing is. If an animation is specified to disallow restarting at a given point, beginElement()
methods calls must fail. Refer also to the section Restarting animation.

Calling beginElementAt(seconds) has the same behavior as beginElement(), except that the
effective begin time is offset from the current presentation time by an amount specified as a parameter.
Passing a negative value for the offset causes the element to begin as for beginElement(), but has the
effect that the element begins at the specified offset into its active duration. The beginElementAt()
method must also respect the restart attribute. The restart semantics for a beginElementAt() method
call are evaluated at the time of the method call, and not at the effective begin time specified by the offset
parameter.

Calling endElement() causes an animation to end the active duration, just as end does. Depending upon
the value of the fill attribute, the animation effect may no longer be applied, or it may be frozen at the
current effect. Refer also to the section Freezing animations. If an animation is not currently active (i.e. if it
has not yet begun or if it is frozen), the endElement() method will fail.

Calling endElementAt() causes an animation to end the active duration, just as endElement() does, but
allows the caller to specify a positive offset, to cause the element to end at a point in the future. Other than
delaying when the end actually happens, the semantics are identical to those for endElement(). If
endElementAt() is called more than once while an element is active, the end time specified by the last
method call will determine the end behavior.

IDL Definition

http://www.w3.org/TR/SVG/animate.html (27 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Restart
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#Fill

Animation - SVG 1.1 - 20030114

interface ElementTimeControl {
 boolean beginElement ()
 raises(DOMException);
 boolean beginElementAt (in float offset)
 raises(DOMException);
 boolean endElement ()
 raises(DOMException);
 boolean endElementAt (in float offset)
 raises(DOMException);
};

Methods

beginElement

Causes this element to begin the local timeline (subject to restart constraints).

No Parameters
Return value

boolean true if the method call was successful and the element was begun. false if
the method call failed. Possible reasons for failure include:

■ The element is already active and cannot be restarted when it is active.
The restart attribute is set to "whenNotActive".

■ The element is active or has been active and cannot be restarted. The
restart attribute is set to "never".

Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate

syntax to allow beginElement calls.
beginElementAt

Causes this element to begin the local timeline (subject to restart constraints), at the passed
offset from the current time when the method is called. If the offset is >= 0, the semantics are
equivalent to an event-base begin with the specified offset. If the offset is < 0, the semantics are
equivalent to beginElement(), but the element active duration is evaluated as though the
element had begun at the passed (negative) offset from the current time when the method is
called.

Parameters
in float offset The offset in seconds at which to begin the element.

Return value
boolean true if the method call was successful and the element was begun. false if

the method call failed. Possible reasons for failure include:
■ The element is already active and cannot be restarted when it is active.

The restart attribute is set to "whenNotActive".
■ The element is active or has been active and cannot be restarted. The
restart attribute is set to "never".

Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate

syntax to allow beginElementAt calls.
endElement

Causes this element to end the local timeline.

http://www.w3.org/TR/SVG/animate.html (28 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

No Parameters
Return value

boolean true if the method call was successful and the element was ended. false if
method call failed. Possible reasons for failure include:

■ The element is not active.
Exceptions

DOMException SYNTAX_ERR: The element was not defined with the appropriate
syntax to allow endElement calls.

endElementAt

Causes this element to end the local timeline at the specified offset from the current time when
the method is called.

Parameters
in float offset The offset in seconds at which to end the element. Must be >= 0.

Return value
boolean true if the method call was successful and the element was ended. false if

the method call failed. Possible reasons for failure include:
■ The element is not active.

Exceptions
DOMException SYNTAX_ERR: The element was not defined with the appropriate

syntax to allow endElementAt calls.

The corresponding Java binding:

package org.w3c.dom.svg;
import org.w3c.dom.DOMException;
public interface ElementTimeControl {
 boolean beginElement ()
 throws DOMException;
 boolean beginElementAt (float offset)
 throws DOMException;
 boolean endElement ()
 throws DOMException;
 boolean endElementAt (float offset)
 throws DOMException;
}

Interface TimeEvent

The TimeEvent interface, defined in SMIL Animation: Supported interfaces defined in SMIL Animation:
Supported interfaces, provides specific contextual information associated with Time events.

The different types of events that can occur are:

beginEvent
This event is raised when the element local timeline begins to play. It will be raised each time the
element begins the active duration (i.e. when it restarts, but not when it repeats). It may be raised both
in the course of normal (i.e. scheduled or interactive) timeline play, as well as in the case that the
element was begun with the beginElement() or beginElementAt() methods. Note that if an
element is restarted while it is currently playing, the element will raise an end event and another begin
event, as the element restarts.

❍ Bubbles: No

http://www.w3.org/TR/SVG/animate.html (29 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport
http://www.w3.org/TR/2001/REC-smil-animation-20010904/#DOMSupport

Animation - SVG 1.1 - 20030114

❍ Cancelable: No
❍ Context Info: None

endEvent
This event is raised at the active end of the element. Note that this event is not raised at the simple
end of each repeat. This event may be raised both in the course of normal (i.e. scheduled or
interactive) timeline play, as well as in the case that the element was ended with the endElement()
or endElementAt() methods. Note that if an element is restarted while it is currently playing, the
element will raise an end event and another begin event, as the element restarts.

❍ Bubbles: No
❍ Cancelable: No
❍ Context Info: None

repeatEvent
This event is raised when an element local timeline repeats. It will be raised each time the element
repeats, after the first iteration.
The event provides a numerical indication of which repeat iteration is beginning. The value is a 0-
based integer, but the repeat event is not raised for the first iteration and so the observed values of the
detail attribute will be >= 1.

❍ Bubbles: No
❍ Cancelable: No
❍ Context Info: detail (current iteration)

IDL Definition

interface TimeEvent : events::Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initTimeEvent (in DOMString typeArg, in views::AbstractView viewArg, in long
detailArg);
};

Attributes

readonly views::AbstractView view
The view attribute identifies the AbstractView [DOM2-VIEWS] from which the event was
generated.

readonly long detail
Specifies some detail information about the Event, depending on the type of the event. For this
event type, indicates the repeat number for the animation.

Methods
initTimeEvent

The initTimeEvent method is used to initialize the value of a TimeEvent created through the
DocumentEvent interface. This method may only be called before the TimeEvent has been
dispatched via the dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence.
Parameters

in DOMString typeArg Specifies the event type.

in views::AbstractView viewArg Specifies the Event's AbstractView.

in long detailArg Specifies the Event's detail.
No Return Value
No Exceptions

http://www.w3.org/TR/SVG/animate.html (30 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/DOM-Level-2-Views/

Animation - SVG 1.1 - 20030114

The corresponding Java binding:

package org.w3c.dom.svg;
import org.w3c.dom.events.Event;
import org.w3c.dom.views.AbstractView;
public interface TimeEvent extends
 Event {
 public AbstractView getView();
 public int getDetail();
 void initTimeEvent (String typeArg, AbstractView viewArg, int detailArg);
}

The following interfaces are defined below: SVGAnimationElement, SVGAnimateElement, SVGSetElement,
SVGAnimateMotionElement, SVGMPathElement, SVGAnimateColorElement,
SVGAnimateTransformElement.

Interface SVGAnimationElement

The SVGAnimationElement interface is the base interface for all of the animation element interfaces:
SVGAnimateElement, SVGSetElement, SVGAnimateColorElement, SVGAnimateMotionElement and
SVGAnimateTransformElement.

Unlike other SVG DOM interfaces, the SVG DOM does not specify convenience DOM properties
corresponding to the various language attributes on SVG's animation elements. Specification of these
convenience properties in a way that will be compatible with future versions of SMIL Animation is expected in
a future version of SVG. The current method for accessing and modifying the attributes on the animation
elements is to use the standard getAttribute, setAttribute, getAttributeNS and
setAttributeNS defined in DOM2.

IDL Definition

interface SVGAnimationElement :
 SVGElement,
 SVGTests,
 SVGExternalResourcesRequired,
 smil::ElementTimeControl,
 events::EventTarget {
 readonly attribute SVGElement targetElement;
 float getStartTime ();
 float getCurrentTime ();
 float getSimpleDuration ()
 raises(DOMException);
};

Attributes

readonly SVGElement targetElement
The element which is being animated.

Methods
getStartTime

Returns the start time in seconds for this animation.

http://www.w3.org/TR/SVG/animate.html (31 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

No Parameters
Return value

float The start time in seconds for this animation relative to the start time of the time
container.

No Exceptions
getCurrentTime

Returns the current time in seconds relative to time zero for the given time container.

No Parameters
Return value

float The current time in seconds relative to time zero for the given time container.
No Exceptions

getSimpleDuration

Returns the number of seconds for the simple duration for this animation. If the simple duration
is undefined (e.g., the end time is indefinite), then an exception is raised.

No Parameters
Return value

float The number of seconds for the simple duration for this animation.
Exceptions

DOMException NOT_SUPPORTED_ERR: The simple duration is not determined on the
given element.

Interface SVGAnimateElement

The SVGAnimateElement interface corresponds to the 'animate' element.

Object-oriented access to the attributes of the 'animate' element via the SVG DOM is not available.

IDL Definition

interface SVGAnimateElement : SVGAnimationElement {};

Interface SVGSetElement

The SVGSetElement interface corresponds to the 'set' element.

Object-oriented access to the attributes of the 'set' element via the SVG DOM is not available.

IDL Definition

http://www.w3.org/TR/SVG/animate.html (32 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

interface SVGSetElement : SVGAnimationElement {};

Interface SVGAnimateMotionElement

The SVGAnimateMotionElement interface corresponds to the 'animateMotion' element.

Object-oriented access to the attributes of the 'animateMotion' element via the SVG DOM is not available.

IDL Definition

interface SVGAnimateMotionElement : SVGAnimationElement {};

Interface SVGMPathElement

The SVGMPathElement interface corresponds to the 'mpath' element.

IDL Definition

interface SVGMPathElement :
 SVGElement,
 SVGURIReference,
 SVGExternalResourcesRequired {};

Interface SVGAnimateColorElement

The SVGAnimateColorElement interface corresponds to the 'animateColor' element.

Object-oriented access to the attributes of the 'animateColor' element via the SVG DOM is not available.

IDL Definition

interface SVGAnimateColorElement : SVGAnimationElement {};

http://www.w3.org/TR/SVG/animate.html (33 of 34)4/2/07 7:28 PM

Animation - SVG 1.1 - 20030114

Interface SVGAnimateTransformElement

The SVGAnimateTransformElement interface corresponds to the 'animateTransform' element.

Object-oriented access to the attributes of the 'animateTransform' element via the SVG DOM is not available.

IDL Definition

interface SVGAnimateTransformElement : SVGAnimationElement {};

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/animate.html (34 of 34)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Fonts - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

20 Fonts

Contents

● 20.1 Introduction
● 20.2 Overview of SVG fonts
● 20.3 The 'font' element
● 20.4 The 'glyph' element
● 20.5 The 'missing-glyph' element
● 20.6 Glyph selection rules
● 20.7 The 'hkern' and 'vkern' elements
● 20.8 Describing a font

❍ 20.8.1 Overview of font descriptions
❍ 20.8.2 Alternative ways for providing a font description
❍ 20.8.3 The 'font-face' element

● 20.9 Font Module
● 20.10 Basic Font Module
● 20.11 DOM interfaces

20.1 Introduction

Reliable delivery of fonts is a requirement for SVG. Designers need to create SVG content with arbitrary fonts
and know that the same graphical result will appear when the content is viewed by all end users, even when end
users do not have the necessary fonts installed on their computers. This parallels the print world, where the
designer uses a given font when authoring a drawing for print, and the graphical content appears exactly the
same in the printed version as it appeared on the designer's authoring system.

SVG utilizes the WebFonts facility defined in the "Cascading Style Sheets (CSS) level 2" specification [CSS2] as
a key mechanism for reliable delivery of font data to end users. In a common scenario, SVG authoring
applications generate compressed, subsetted WebFonts for all text elements used by a given SVG document
fragment. Typically, the WebFonts are saved in a location relative to the referencing document.

One disadvantage to the WebFont facility to date is that specifications such as [CSS2] do not require support of
particular font formats. The result is that different implementations support different Web font formats, thereby
making it difficult for Web site creators to post a single Web site using WebFonts that work across all user
agents.

To provide a common font format for SVG that is guaranteed to be supported by all conforming SVG viewers,
SVG provides a facility to define fonts in SVG. This facility is called SVG fonts.

http://www.w3.org/TR/SVG/fonts.html (1 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/SVG/conform.html#ConformingSVGViewers

Fonts - SVG 1.1 - 20030114

SVG fonts can improve the semantic richness of graphics that represent text. For example, many company
logos consist of the company name drawn artistically. In some cases, accessibility may be enhanced by
expressing the logo as a series of glyphs in an SVG font and then rendering the logo as a 'text' element which
references this font.

20.2 Overview of SVG fonts

An SVG font is a font defined using SVG's 'font' element.

The purpose of SVG fonts is to allow for delivery of glyph outlines in display-only environments. SVG fonts that
accompany Web pages must be supported only in browsing and viewing situations. Graphics editing
applications or file translation tools must not attempt to convert SVG fonts into system fonts. The intent is that
SVG files be interchangeable between two content creators, but not the SVG fonts that might accompany these
SVG files. Instead, each content creator will need to license the given font before being able to successfully edit
the SVG file. The font-face-name element indicates the name of licensed font to use for editing.

SVG fonts contain unhinted font outlines. Because of this, on many implementations there will be limitations
regarding the quality and legibility of text in small font sizes. For increased quality and legibility in small font
sizes, content creators may want to use an alternate font technology, such as fonts that ship with operating
systems or an alternate WebFont format.

Because SVG fonts are expressed using SVG elements and attributes, in some cases the SVG font will take up
more space than if the font were expressed in a different WebFont format which was especially designed for
compact expression of font data. For the fastest delivery of Web pages, content creators may want to use an
alternate font technology.

A key value of SVG fonts is guaranteed availability in SVG user agents. In some situations, it might be
appropriate for an SVG font to be the first choice for rendering some text. In other situations, the SVG font might
be an alternate, back-up font in case the first choice font (perhaps a hinted system font) is not available to a
given user.

The characteristics and attributes of SVG fonts correspond closely to the font characteristics and parameters
described in the "Fonts" chapter of the "Cascading Style Sheets (CSS) level 2" specification [CSS2]. In this
model, various font metrics, such as advance values and baseline locations, and the glyph outlines themselves,
are expressed in units that are relative to an abstract square whose height is the intended distance between
lines of type in the same type size. This square is called the em square and it is the design grid on which the
glyph outlines are defined. The value of the units-per-em attribute on the 'font' element specifies how many units
the em square is divided into. Common values for other font types are, for example, 250 (Intellifont), 1000 (Type
1) and 2048 (TrueType, TrueType GX and Open-Type). Unlike standard graphics in SVG, where the initial
coordinate system has the y-axis pointing downward (see The initial coordinate system), the design grid for SVG
fonts, along with the initial coordinate system for the glyphs, has the y-axis pointing upward for consistency with
accepted industry practice for many popular font formats.

SVG fonts and their associated glyphs do not specify bounding box information. Because the glyph outlines are
expressed as SVG graphics elements, the implementation has the option to render the glyphs either using
standard graphics calls or by using special-purpose font rendering technology, in which case any necessary
maximum bounding box and overhang calculations can be performed from analysis of the graphics elements
contained within the glyph outlines.

An SVG font can be either embedded within the same document that uses the font or saved as part of an
external resource.

Here is an example of how you might embed an SVG font inside of an SVG document.

http://www.w3.org/TR/SVG/fonts.html (2 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/access.html
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/

Fonts - SVG 1.1 - 20030114

<?xml version="1.0" standalone="yes"?>
<svg width="400px" height="300px" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>
 <defs>

 <font-face font-family="Super Sans" font-weight="bold" font-style="normal"
 units-per-em="1000" cap-height="600" x-height="400"
 ascent="700" descent="300"
 alphabetic="0" mathematical="350" ideographic="400" hanging="500">
 <font-face-src>
 <font-face-name name="Super Sans Bold"/>
 </font-face-src>
 </font-face>
 <missing-glyph><path d="M0,0h200v200h-200z"/></missing-glyph>
 <glyph unicode="!" horiz-adv-x="300"><!-- Outline of exclam. pt. glyph --></glyph>
 <glyph unicode="@"><!-- Outline of @ glyph --></glyph>
 <!-- more glyphs -->

 </defs>
 <text x="100" y="100"
 style="font-family: 'Super Sans', Helvetica, sans-serif;
 font-weight: bold; font-style: normal">Text
 using embedded font</text>
</svg>

Here is an example of how you might use the CSS @font-face facility to reference an SVG font which is saved
in an external file. First referenced SVG font file:

<?xml version="1.0" standalone="yes"?>
<svg width="100%" height="100%" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>
 <defs>

 <font-face font-family="Super Sans" font-weight="normal" font-style="italic"
 units-per-em="1000" cap-height="600" x-height="400"
 ascent="700" descent="300"
 alphabetic="0" mathematical="350" ideographic="400" hanging="500">
 <font-face-src>
 <font-face-name name="Super Sans Italic"/>
 </font-face-src>
 </font-face>
 <missing-glyph><path d="M0,0h200v200h-200z"/></missing-glyph>
 <glyph unicode="!" horiz-adv-x="300"><!-- Outline of exclam. pt. glyph --></glyph>
 <glyph unicode="@"><!-- Outline of @ glyph --></glyph>
 <!-- more glyphs -->

 </defs>
</svg>

The SVG file which uses/references the above SVG font

<?xml version="1.0" standalone="yes"?>
<svg width="400px" height="300px" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>
 <defs>
 <style type="text/css">
 <![CDATA[
 @font-face {
 font-family: 'Super Sans';
 font-weight: normal;
 font-style: italic;
 src: url("myfont.svg#Font2") format(svg)

http://www.w3.org/TR/SVG/fonts.html (3 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

Fonts - SVG 1.1 - 20030114

 }
]]>
 </style>
 </defs>
 <text x="100" y="100"
 style="font-family: 'Super Sans'; font-weight:normal;
 font-style: italic">Text using referenced font</text>
</svg>

20.3 The 'font' element

The 'font' element defines an SVG font.

<!ENTITY % SVG.font.extra.content "" >

<!ENTITY % SVG.font.element "INCLUDE" >
<![%SVG.font.element;[
<!ENTITY % SVG.font.content
 "((%SVG.Description.class;)*, %SVG.font-face.qname;,

 %SVG.missing-glyph.qname;, (%SVG.glyph.qname; | %SVG.hkern.qname;

 | %SVG.vkern.qname; %SVG.font.extra.content;)*)"

>
<!ELEMENT %SVG.font.qname; %SVG.font.content; >

<!-- end of SVG.font.element -->]]>

<!ENTITY % SVG.font.attlist "INCLUDE" >
<![%SVG.font.attlist;[
<!ATTLIST %SVG.font.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 %SVG.External.attrib;

 horiz-origin-x %Number.datatype; #IMPLIED

 horiz-origin-y %Number.datatype; #IMPLIED

 horiz-adv-x %Number.datatype; #REQUIRED

 vert-origin-x %Number.datatype; #IMPLIED

 vert-origin-y %Number.datatype; #IMPLIED

 vert-adv-y %Number.datatype; #IMPLIED

>

Attribute definitions:

horiz-origin-x = "<number>"
The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
horizontally oriented text. (Note that the origin applies to all glyphs in the font.)
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: no.

horiz-origin-y = "<number>"
The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
horizontally oriented text. (Note that the origin applies to all glyphs in the font.)
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: no.

horiz-adv-x = "<number>"
The default horizontal advance after rendering a glyph in horizontal orientation. Glyph widths are required
to be non-negative, even if the glyph is typically rendered right-to-left, as in Hebrew and Arabic scripts.

http://www.w3.org/TR/SVG/fonts.html (4 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

Animatable: no.
vert-origin-x = "<number>"

The default X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text.
If the attribute is not specified, the effect is as if the attribute were set to half of the effective value of
attribute horiz-adv-x.
Animatable: no.

vert-origin-y = "<number>"
The default Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text.
If the attribute is not specified, the effect is as if the attribute were set to the position specified by the font's
ascent attribute.
Animatable: no.

vert-adv-y = "<number>"
The default vertical advance after rendering a glyph in vertical orientation.
If the attribute is not specified, the effect is as if a value equivalent of one em were specified (see units-
per-em).
Animatable: no.

Each 'font' element must have a 'font-face' child element which describes various characteristics of the font.

20.4 The 'glyph' element

The 'glyph' element defines the graphics for a given glyph. The coordinate system for the glyph is defined by the
various attributes in the 'font' element.

The graphics that make up the 'glyph' can be either a single path data specification within the d attribute or
arbitrary SVG as content within the 'glyph'. These two alternatives are processed differently (see below).

<!ENTITY % SVG.glyph.extra.content "" >
<!ENTITY % SVG.glyph.element "INCLUDE" >
<![%SVG.glyph.element;[
<!ENTITY % SVG.glyph.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.glyph.extra.content;)*"

>
<!ELEMENT %SVG.glyph.qname; %SVG.glyph.content; >

<!-- end of SVG.glyph.element -->]]>
<!ENTITY % SVG.glyph.attlist "INCLUDE" >
<![%SVG.glyph.attlist;[
<!ATTLIST %SVG.glyph.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 unicode CDATA #IMPLIED
 glyph-name CDATA #IMPLIED
 d %PathData.datatype; #IMPLIED

 orientation CDATA #IMPLIED
 arabic-form CDATA #IMPLIED
 lang %LanguageCodes.datatype; #IMPLIED

http://www.w3.org/TR/SVG/fonts.html (5 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

 horiz-adv-x %Number.datatype; #IMPLIED

 vert-origin-x %Number.datatype; #IMPLIED

 vert-origin-y %Number.datatype; #IMPLIED

 vert-adv-y %Number.datatype; #IMPLIED

>

Attribute definitions:

unicode = "<string>"
One or more Unicode characters indicating the sequence of Unicode characters which corresponds to this
glyph. If a character is provided, then this glyph corresponds to the given Unicode character. If multiple
characters are provided, then this glyph corresponds to the given sequence of Unicode characters. One
use of a sequence of characters is ligatures. For example, if unicode="ffl", then the given glyph will be
used to render the sequence of characters "f", "f", and "l".

It is often useful to refer to characters using XML character references expressed in hexadecimal notation
or decimal notation. For example, unicode="ffl" could be expressed as XML character references in
hexadecimal notation as unicode="ffl" or in decimal notation as unicode="ff
l".

The unicode attribute contributes to the process for deciding which glyph(s) are used to represent which
character(s). See glyph selection rules. If the unicode attribute is not provided for a given 'glyph', then the
only way to use this glyph is via an 'altGlyph' reference.
Animatable: no.

glyph-name = "<name> [, <name>]* "
A name for the glyph. It is recommended that glyph names be unique within a font. The glyph names can
be used in situations where Unicode character numbers do not provide sufficient information to access
the correct glyph, such as when there are multiple glyphs per Unicode character. The glyph names can be
referenced in kerning definitions.
Animatable: no.

d = "path data"
The definition of the outline of a glyph, using the same syntax as for the d attribute on a 'path' element.
See Path data.
See below for a discussion of this attribute.
Animatable: no.

orientation = "h | v"
Indicates that the given glyph is only to be used for a particular inline-progression-direction (i.e., horizontal
or vertical). If the attribute is not specified, then the glyph can be used in all cases (i.e., both horizontal
and vertical inline-progression-direction).
Animatable: no.

arabic-form = "initial | medial | terminal | isolated"
For Arabic glyphs, indicates which of the four possible forms this glyph represents.
Animatable: no.

lang = "%LanguageCodes;"
The attribute value is a comma-separated list of language names as defined in [RFC3066]. The glyph can
be used if the xml:lang attribute exactly matches one of the languages given in the value of this
parameter, or if the xml:lang attribute exactly equals a prefix of one of the languages given in the value of
this parameter such that the first tag character following the prefix is "-".
Animatable: no.

horiz-adv-x = "<number>"
The horizontal advance after rendering the glyph in horizontal orientation. If the attribute is not specified,
the effect is as if the attribute were set to the value of the font's horiz-adv-x attribute.
Glyph widths are required to be non-negative, even if the glyph is typically rendered right-to-left, as in
Hebrew and Arabic scripts.

http://www.w3.org/TR/SVG/fonts.html (6 of 22)4/2/07 7:28 PM

http://www.ietf.org/rfc/rfc3066.txt

Fonts - SVG 1.1 - 20030114

Animatable: no.
vert-origin-x = "<number>"

The X-coordinate in the font coordinate system of the origin of the glyph to be used when drawing
vertically oriented text.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's vert-origin-x
attribute.
Animatable: no.

vert-origin-y = "<number>"
The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing vertically
oriented text.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's vert-origin-y
attribute.
Animatable: no.

vert-adv-y = "<number>"
The vertical advance after rendering a glyph in vertical orientation.
If the attribute is not specified, the effect is as if the attribute were set to the value of the font's vert-adv-y
attribute.
Animatable: no.

The graphics for the 'glyph' can be specified using either the d attribute or arbitrary SVG as content within the
'glyph'.

If the d attribute is specified, then the path data within this attribute is processed as follows:

● Any relative coordinates within the path data specification are converted into equivalent absolute
coordinates

● Each of these absolute coordinates is transformed from the font coordinate system into the 'text'
element's current coordinate system such that the origin of the font coordinate system is properly
positioned and rotated to align with the current text position and orientation for the glyph, and scaled so
that the correct 'font-size' is achieved.

● The resulting, transformed path specification is rendered as if it were a 'path' element, using the styling
properties that apply to the characters which correspond to the given glyph, and ignoring any styling
properties specified on the 'font' element or the 'glyph' element.

If the 'glyph' has child elements, then those child elements are rendered in a manner similar to how the 'use'
element renders a referenced symbol. The rendering effect is as if the contents of the referenced 'glyph' element
were deeply cloned into a separate non-exposed DOM tree. Because the cloned DOM tree is non-exposed, the
SVG DOM does not show the cloned instance.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced 'glyph' element
into a non-exposed DOM tree also copies any property values resulting from the CSS cascade [CSS2-
CASCADE] on the referenced 'glyph' and its contents, and also applies any property values on the 'font'
element. CSS2 selectors can be applied to the original (i.e., referenced) elements because they are part of the
formal document structure. CSS2 selectors cannot be applied to the (conceptually) cloned DOM tree because its
contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced 'glyph' had been textually included as a deeply cloned
child within the document tree. The referenced 'glyph' inherits properties from the element that contains the
characters that correspond to the 'glyph'. The 'glyph' does not inherit properties from the 'font' element's original
parents.

In the generated content, for each instance of a given 'glyph', a 'g' is created which carries with it all property
values resulting from the CSS cascade [CSS2-CASCADE] on the 'font' element for the referenced 'glyph'.

http://www.w3.org/TR/SVG/fonts.html (7 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html

Fonts - SVG 1.1 - 20030114

Within this 'g' is another 'g' which carries with it all property values resulting from the CSS cascade [CSS2-
CASCADE] on the 'glyph' element. The original contents of the 'glyph' element are deep-cloned within the inner
'g' element.

If the 'glyph' has both a d attribute and child elements, the d attribute is rendered first, and then the child
elements.

In general, the d attribute renders in the same manner as system fonts. For example, a dashed pattern will
usually look the same if applied to a system font or to an SVG font which defines its glyphs using the d attribute.
Many implementations will be able to render glyphs defined with the d attribute quickly and will be able to use a
font cache for further performance gains.

Defining a glyph by including child elements within the 'glyph' gives greater flexibility but more complexity.
Different fill and stroke techniques can be used on different parts of the glyphs. For example, the base of an "i"
could be red, and the dot could be blue. This approach has an inherent complexity with units. Any properties
specified on a text elements which represents a length, such as the 'stroke-width' property, might produce
surprising results since the length value will be processed in the coordinate system of the glyph.

20.5 The 'missing-glyph' element

The 'missing-glyph' element defines the graphics to use if there is an attempt to draw a glyph from a given font
and the given glyph has not been defined. The attributes on the 'missing-glyph' element have the same meaning
as the corresponding attributes on the 'glyph' element.

<!ENTITY % SVG.missing-glyph.extra.content "" >
<!ENTITY % SVG.missing-glyph.element "INCLUDE" >
<![%SVG.missing-glyph.element;[
<!ENTITY % SVG.missing-glyph.content
 "(%SVG.Description.class; | %SVG.Animation.class; %SVG.Structure.class;

 %SVG.Conditional.class; %SVG.Image.class; %SVG.Style.class;

 %SVG.Shape.class; %SVG.Text.class; %SVG.Marker.class;

 %SVG.ColorProfile.class; %SVG.Gradient.class; %SVG.Pattern.class;

 %SVG.Clip.class; %SVG.Mask.class; %SVG.Filter.class; %SVG.Cursor.class;

 %SVG.Hyperlink.class; %SVG.View.class; %SVG.Script.class;

 %SVG.Font.class; %SVG.missing-glyph.extra.content;)*"

>
<!ELEMENT %SVG.missing-glyph.qname; %SVG.missing-glyph\

.content; >
<!-- end of SVG.missing-glyph.element -->]]>
<!ENTITY % SVG.missing-glyph.attlist "INCLUDE" >
<![%SVG.missing-glyph.attlist;[
<!ATTLIST %SVG.missing-glyph.qname;

 %SVG.Core.attrib;

 %SVG.Style.attrib;

 %SVG.Presentation.attrib;

 d %PathData.datatype; #IMPLIED

 horiz-adv-x %Number.datatype; #IMPLIED

 vert-origin-x %Number.datatype; #IMPLIED

 vert-origin-y %Number.datatype; #IMPLIED

 vert-adv-y %Number.datatype; #IMPLIED

>

20.6 Glyph selection rules

http://www.w3.org/TR/SVG/fonts.html (8 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html

Fonts - SVG 1.1 - 20030114

When determining the glyph(s) to draw a given character sequence, the 'font' element is searched from its first
'glyph' element to its last in logical order to see if the upcoming sequence of Unicode characters to be rendered
matches the sequence of Unicode characters specified in the unicode attribute for the given 'glyph' element. The
first successful match is used. Thus, the "ffl" ligature needs to be defined in the font before the "f" glyph;
otherwise, the "ffl" will never be selected.

Note that any occurrences of 'altGlyph' take precedence over the above glyph selection rules within an SVG font.

20.7 The 'hkern' and 'vkern' elements

The 'hkern' and 'vkern' elements define kerning pairs for horizontally-oriented and vertically-oriented pairs of
glyphs, respectively.

Kern pairs identify pairs of glyphs within a single font whose inter-glyph spacing is adjusted when the pair of
glyphs are rendered next to each other. In addition to the requirement that the pair of glyphs are from the same
font, SVG font kerning happens only when the two glyphs correspond to characters which have the same values
for properties 'font-family', 'font-size', 'font-style', 'font-weight', 'font-variant', 'font-stretch', 'font-size-adjust' and
'font'.

An example of a kerning pair are the letters "Va", where the typographic result might look better if the letters "V"
and the "a" were rendered slightly closer together.

Right-to-left and bidirectional text in SVG is laid out in a two-step process, which is described in Relationship
with bidirectionality. If SVG fonts are used, before kerning is applied, characters are re-ordered into left-to-right
(or top-to-bottom, for vertical text) visual rendering order. Kerning from SVG fonts is then applied on pairs of
glyphs which are rendered contiguously. The first glyph in the kerning pair is the left (or top) glyph in visual
rendering order. The second glyph in the kerning pair is the right (or bottom) glyph in the pair.

For convenience to font designers and to minimize file sizes, a single 'hkern' and 'vkern' can define a single
kerning adjustment value between one set of glyphs (e.g., a range of Unicode characters) and another set of
glyphs (e.g., another range of Unicode characters).

The 'hkern' element defines kerning pairs and adjustment values in the horizontal advance value when drawing
pairs of glyphs which the two glyphs are contiguous and are both rendered horizontally (i.e., side-by-side). The
spacing between characters is reduced by the kerning adjustment. (Negative kerning adjustments increase the
spacing between characters.)

<!ENTITY % SVG.hkern.element "INCLUDE" >
<![%SVG.hkern.element;[
<!ENTITY % SVG.hkern.content "EMPTY" >
<!ELEMENT %SVG.hkern.qname; %SVG.hkern.content; >

<!-- end of SVG.hkern.element -->]]>
<!ENTITY % SVG.hkern.attlist "INCLUDE" >
<![%SVG.hkern.attlist;[
<!ATTLIST %SVG.hkern.qname;

 %SVG.Core.attrib;

 u1 CDATA #IMPLIED
 g1 CDATA #IMPLIED
 u2 CDATA #IMPLIED
 g2 CDATA #IMPLIED
 k %Number.datatype; #REQUIRED

>

Attribute definitions:

http://www.w3.org/TR/SVG/fonts.html (9 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

u1 = "[<character> | <urange>] [, [<character> | <urange>]]* "
A sequence (comma-separated) of Unicode characters (refer to the description of the unicode attribute to
the 'glyph' element for a description of how to express individual Unicode characters) and/or ranges of
Unicode characters (see description of ranges of Unicode characters in [CSS2]) which identify a set of
possible first glyphs in the kerning pair. If a given Unicode character within the set has multiple
corresponding 'glyph' elements (i.e., there are multiple 'glyph' elements with the same unicode attribute
value, but different glyphName values), then all such glyphs are included in the set. Comma is the
separator character; thus, to kern a comma, specify the comma as part of a range of Unicode characters
or as a glyph name using the g1 attribute. The total set of possible first glyphs in the kerning pair is the
union of glyphs specified by the u1 and g1 attributes.
Animatable: no.

g1 = "<name> [, <name>]* "
A sequence (comma-separated) of glyph names (i.e., values that match glyphName attributes on 'glyph'
elements) which identify a set of possible first glyphs in the kerning pair. All glyphs with the given glyph
name are included in the set. The total set of possible first glyphs in the kerning pair is the union of glyphs
specified by the u1 and g1 attributes.
Animatable: no.

u2 = "[<number> | <urange>] [, [<number> | <urange>]]* "
Same as the u1 attribute, except that u2 specifies possible second glyphs in the kerning pair.
Animatable: no.

g2 = "<name> [, <name>]* "
Same as the g1 attribute, except that g2 specifies possible second glyphs in the kerning pair.
Animatable: no.

k = "<number>"
The amount to decrease the spacing between the two glyphs in the kerning pair. The value is in the font
coordinate system. This attribute is required.
Animatable: no.

At least one each of u1 or g1 and at least one of u2 or g2 must be provided.

The 'vkern' element defines kerning pairs and adjustment values in the vertical advance value when drawing
pairs of glyphs together when stacked vertically. The spacing between characters is reduced by the kerning
adjustment.

<!ENTITY % SVG.vkern.element "INCLUDE" >
<![%SVG.vkern.element;[
<!ENTITY % SVG.vkern.content "EMPTY" >
<!ELEMENT %SVG.vkern.qname; %SVG.vkern.content; >

<!-- end of SVG.vkern.element -->]]>
<!ENTITY % SVG.vkern.attlist "INCLUDE" >
<![%SVG.vkern.attlist;[
<!ATTLIST %SVG.vkern.qname;

 %SVG.Core.attrib;

 u1 CDATA #IMPLIED
 g1 CDATA #IMPLIED
 u2 CDATA #IMPLIED
 g2 CDATA #IMPLIED
 k %Number.datatype; #REQUIRED

>

20.8 Describing a font

http://www.w3.org/TR/SVG/fonts.html (10 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/

Fonts - SVG 1.1 - 20030114

20.8.1 Overview of font descriptions

A font description provides the bridge between an author's font specification and the font data, which is the data
needed to format text and to render the abstract glyphs to which the characters map - the actual scalable
outlines or bitmaps. Fonts are referenced by properties, such as the 'font-family' property.

Each specified font description is added to the font database and so that it can be used to select the relevant
font data. The font description contains descriptors such as the location of the font data on the Web, and
characterizations of that font data. The font descriptors are also needed to match the font properties to particular
font data. The level of detail of a font description can vary from just the name of the font up to a list of glyph
widths.

For more about font descriptions, refer to the font chapter in the CSS2 specification [CSS2 Fonts].

20.8.2 Alternative ways for providing a font description

Font descriptions can be specified in either of the following ways:

● a 'font-face' element
● an @font-face rule within a CSS style sheet (only applicable for user agents which support using CSS to

style the SVG content)

20.8.3 The 'font-face' element

The 'font-face' element corresponds directly to the @font-face facility in CSS2. It can be used to describe the
characteristics of any font, SVG font or otherwise.

When used to describe the characteristics of an SVG font contained within the same document, it is
recommended that the 'font-face' element be a child of the 'font' element it is describing so that the 'font' element
can be self-contained and fully-described. In this case, any 'font-face-src' elements within the 'font-face' element
are ignored as it is assumed that the 'font-face' element is describing the characteristics of its parent 'font'
element.

<!ENTITY % SVG.font-face.extra.content "" >

<!ENTITY % SVG.font-face.element "INCLUDE" >
<![%SVG.font-face.element;[
<!ENTITY % SVG.font-face.content
 "((%SVG.Description.class;)*, %SVG.font-face-src.qname;?,

 %SVG.definition-src.qname;? %SVG.font-face.extra.content;)"

>
<!ELEMENT %SVG.font-face.qname; %SVG.font-face.content; >

<!-- end of SVG.font-face.element -->]]>

<!ENTITY % SVG.font-face.attlist "INCLUDE" >
<![%SVG.font-face.attlist;[
<!ATTLIST %SVG.font-face.qname;

 %SVG.Core.attrib;

 font-family %FontFamilyValue.datatype; #IMPLIED
 font-style (normal | italic | oblique) #IMPLIED
 font-variant (normal | small-caps) #IMPLIED
 font-weight (normal | bold | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
 800 | 900) #IMPLIED

http://www.w3.org/TR/SVG/fonts.html (11 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

Fonts - SVG 1.1 - 20030114

 font-stretch (normal | ultra-condensed | extra-condensed | condensed |
 semi-condensed | semi-expanded | expanded | extra-expanded |
 ultra-expanded) #IMPLIED
 font-size %FontSizeValue.datatype; #IMPLIED
 unicode-range CDATA #IMPLIED
 units-per-em %Number.datatype; #IMPLIED

 panose-1 CDATA #IMPLIED
 stemv %Number.datatype; #IMPLIED

 stemh %Number.datatype; #IMPLIED

 slope %Number.datatype; #IMPLIED

 cap-height %Number.datatype; #IMPLIED

 x-height %Number.datatype; #IMPLIED

 accent-height %Number.datatype; #IMPLIED

 ascent %Number.datatype; #IMPLIED

 descent %Number.datatype; #IMPLIED

 widths CDATA #IMPLIED
 bbox CDATA #IMPLIED
 ideographic %Number.datatype; #IMPLIED

 alphabetic %Number.datatype; #IMPLIED

 mathematical %Number.datatype; #IMPLIED

 hanging %Number.datatype; #IMPLIED

 v-ideographic %Number.datatype; #IMPLIED

 v-alphabetic %Number.datatype; #IMPLIED

 v-mathematical %Number.datatype; #IMPLIED

 v-hanging %Number.datatype; #IMPLIED

 underline-position %Number.datatype; #IMPLIED

 underline-thickness %Number.datatype; #IMPLIED

 strikethrough-position %Number.datatype; #IMPLIED

 strikethrough-thickness %Number.datatype; #IMPLIED

 overline-position %Number.datatype; #IMPLIED

 overline-thickness %Number.datatype; #IMPLIED

>

Attribute definitions:

font-family = "<string>"
Same syntax and semantics as the 'font-family' descriptor within an @font-face rule.
Animatable: no.

font-style = "all | [normal | italic | oblique] [, [normal | italic | oblique]]*"
Same syntax and semantics as the 'font-style' descriptor within an @font-face rule. The style of a font.
Takes on the same values as the 'font-style' property, except that a comma-separated list is permitted.
If the attribute is not specified, the effect is as if a value of "all" were specified.
Animatable: no.

font-variant = "[normal | small-caps] [,[normal | small-caps]]*"
Same syntax and semantics as the 'font-variant' descriptor within an @font-face rule. Indication of
whether this face is the small-caps variant of a font. Takes on the same values as the 'font-variant'
property, except that a comma-separated list is permitted.
If the attribute is not specified, the effect is as if a value of "normal" were specified.
Animatable: no.

font-weight = "all | [normal | bold |100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900] [, [normal | bold |100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900]]*"

Same syntax and semantics as the 'font-weight' descriptor within an @font-face rule.
The weight of a face relative to others in the same font family. Takes on the same values as the 'font-
weight' property with three exceptions:

❍ relative keywords (bolder, lighter) are not permitted

http://www.w3.org/TR/SVG/fonts.html (12 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-family
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-style
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-variant
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-weight
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

Fonts - SVG 1.1 - 20030114

❍ a comma-separated list of values is permitted, for fonts that contain multiple weights
❍ an additional keyword, 'all', is permitted, which means that the font will match for all possible

weights; either because it contains multiple weights, or because that face only has a single weight.
If the attribute is not specified, the effect is as if a value of "all" were specified.
Animatable: no.

font-stretch = "all | [normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-
expanded | expanded | extra-expanded | ultra-expanded] [, [normal | ultra-condensed | extra-condensed |
condensed | semi-condensed | semi-expanded | expanded | extra-expanded | ultra-expanded]]*"

Same syntax and semantics as the 'font-stretch' descriptor within an @font-face rule. Indication of the
condensed or expanded nature of the face relative to others in the same font family. Takes on the same
values as the 'font-stretch' property except that:

❍ relative keywords (wider, narrower) are not permitted
❍ a comma-separated list is permitted
❍ the keyword 'all' is permitted

If the attribute is not specified, the effect is as if a value of "normal" were specified.
Animatable: no.

font-size = "<string>"
Same syntax and semantics as the 'font-size' descriptor within an @font-face rule.
Animatable: no.

unicode-range = "<urange> [, <urange>]*"
Same syntax and semantics as the 'unicode-range' descriptor within an @font-face rule. The range of ISO
10646 characters [UNICODE] possibly covered by the glyphs in the font. Except for any additional
information provided in this specification, the normative definition of the attribute is in [CSS2].
If the attribute is not specified, the effect is as if a value of "U+0-10FFFF" were specified.
Animatable: no.

units-per-em = "<number>"
Same syntax and semantics as the 'units-per-em' descriptor within an @font-face rule. The number of
coordinate units on the em square, the size of the design grid on which glyphs are laid out.
This value is almost always necessary as nearly every other attribute requires the definition of a design
grid.
If the attribute is not specified, the effect is as if a value of "1000" were specified.
Animatable: no.

panose-1 = "[<integer>]{10}"
Same syntax and semantics as the 'panose-1' descriptor within an @font-face rule. The Panose-1
number, consisting of ten decimal integers, separated by whitespace. Except for any additional
information provided in this specification, the normative definition of the attribute is in [CSS2].
If the attribute is not specified, the effect is as if a value of "0 0 0 0 0 0 0 0 0 0" were specified.
Animatable: no.

stemv = "<number>"
Same syntax and semantics as the 'stemv' descriptor within an @font-face rule.
Animatable: no.

stemh = "<number>"
Same syntax and semantics as the 'stemh' descriptor within an @font-face rule.
Animatable: no.

slope = "<number>"
Same syntax and semantics as the 'slope' descriptor within an @font-face rule. The vertical stroke angle
of the font. Except for any additional information provided in this specification, the normative definition of
the attribute is in [CSS2].
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: no.

cap-height = "<number>"
Same syntax and semantics as the 'cap-height' descriptor within an @font-face rule. The height of
uppercase glyphs in the font within the font coordinate system.
Animatable: no.

http://www.w3.org/TR/SVG/fonts.html (13 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-stretch
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-font-size
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-unicode-range
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-units-per-em
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-panose-1
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-stemv
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-stemh
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-slope
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-cap-height
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

Fonts - SVG 1.1 - 20030114

x-height = "<number>"
Same syntax and semantics as the 'x-height' descriptor within an @font-face rule. The height of
lowercase glyphs in the font within the font coordinate system.
Animatable: no.

accent-height = "<number>"
The distance from the origin to the top of accent characters, measured by a distance within the font
coordinate system.
If the attribute is not specified, the effect is as if the attribute were set to the value of the ascent attribute. If
this attribute is used, the units-per-em attribute must also be specified.
Animatable: no.

ascent = "<number>"
Same syntax and semantics as the 'ascent' descriptor within an @font-face rule. The maximum
unaccented height of the font within the font coordinate system.
If the attribute is not specified, the effect is as if the attribute were set to the difference between the units-
per-em value and the vert-origin-y value for the corresponding font.
Animatable: no.

descent = "<number>"
Same syntax and semantics as the 'descent' descriptor within an @font-face rule. The maximum
unaccented depth of the font within the font coordinate system.
If the attribute is not specified, the effect is as if the attribute were set to the vert-origin-y value for the
corresponding font.
Animatable: no.

widths = "<string>"
Same syntax and semantics as the 'widths' descriptor within an @font-face rule.
Animatable: no.

bbox = "<string>"
Same syntax and semantics as the 'bbox' descriptor within an @font-face rule.
Animatable: no.

ideographic = "<number>"
For horizontally oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve
ideographic baseline alignment. The value is an offset in the font coordinate system. If this attribute is
provided, the units-per-em attribute must also be specified.
Animatable: no.

alphabetic = "<number>"
Same syntax and semantics as the 'baseline' descriptor within an @font-face rule. For horizontally
oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve alphabetic baseline
alignment. The value is an offset in the font coordinate system. If this attribute is provided, the units-per-
em attribute must also be specified.
Animatable: no.

mathematical = "<number>"
Same syntax and semantics as the 'mathline' descriptor within an @font-face rule. For horizontally
oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve mathematical baseline
alignment. The value is an offset in the font coordinate system. If this attribute is provided, the units-per-
em attribute must also be specified.
Animatable: no.

hanging = "<number>"
For horizontally oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve hanging
baseline alignment. The value is an offset in the font coordinate system. If this attribute is provided, the
units-per-em attribute must also be specified.
Animatable: no.

v-ideographic = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve ideographic
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific vert-

http://www.w3.org/TR/SVG/fonts.html (14 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-x-height
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-ascent
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-descent
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-widths
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-bbox
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-baseline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-mathline
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions

Fonts - SVG 1.1 - 20030114

origin-x attribute. If this attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

v-alphabetic = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve alphabetic
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific vert-
origin-x attribute. If this attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

v-mathematical = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve
mathematical baseline alignment. The value is an offset in the font coordinate system relative to the glyph-
specific vert-origin-x attribute. If this attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

v-hanging = "<number>"
For vertically oriented glyph layouts, indicates the alignment coordinate for glyphs to achieve hanging
baseline alignment. The value is an offset in the font coordinate system relative to the glyph-specific vert-
origin-x attribute. If this attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

underline-position = "<number>"
The ideal position of an underline within the font coordinate system. If this attribute is provided, the units-
per-em attribute must also be specified.
Animatable: no.

underline-thickness = "<number>"
The ideal thickness of an underline, expressed as a length within the font coordinate system. If this
attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

strikethrough-position = "<number>"
The ideal position of a strike-through within the font coordinate system. If this attribute is provided, the
units-per-em attribute must also be specified.
Animatable: no.

strikethrough-thickness = "<number>"
The ideal thickness of a strike-through, expressed as a length within the font coordinate system. If this
attribute is provided, the units-per-em attribute must also be specified.
Animatable: no.

overline-position = "<number>"
The ideal position of an overline within the font coordinate system. If this attribute is provided, the units-
per-em attribute must also be specified.
Animatable: no.

overline-thickness = "<number>"
The ideal thickness of an overline, expressed as a length within the font coordinate system. If this attribute
is provided, the units-per-em attribute must also be specified.
Animatable: no.

The following elements and attributes correspond to the 'src' descriptor within an @font-face rule. (Refer to the
descriptions of the [@font-face rule] and ['src' descriptor] in the CSS2 specification.)

When a 'font-face-uri' is referencing an SVG font, then that reference must be to an SVG 'font' element,
therefore requiring the use of a fragment identifier (see [URI]). The referenced 'font' element can be local (i.e.,
within the same document as the 'font-face-uri' element) or remote (i.e., within a different document).

<!ENTITY % SVG.font-face-src.extra.content "" >
<!ENTITY % SVG.font-face-src.element "INCLUDE" >
<![%SVG.font-face-src.element;[
<!ENTITY % SVG.font-face-src.content
 "(%SVG.font-face-uri.qname; | %SVG.font-face-name.qname;

http://www.w3.org/TR/SVG/fonts.html (15 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-src
http://www.ietf.org/rfc/rfc2396.txt

Fonts - SVG 1.1 - 20030114

 %SVG.font-face-src.extra.content;)+"
>
<!ELEMENT %SVG.font-face-src.qname; %SVG.font-face-src.\

content; >
<!-- end of SVG.font-face-src.element -->]]>
<!ENTITY % SVG.font-face-src.attlist "INCLUDE" >
<![%SVG.font-face-src.attlist;[
<!ATTLIST %SVG.font-face-src.qname;

 %SVG.Core.attrib;

>
<!-- end of SVG.font-face-src.attlist -->]]>
<!-- font-face-uri: Font Face URI Element -->
<!ENTITY % SVG.font-face-uri.extra.content "" >
<!ENTITY % SVG.font-face-uri.element "INCLUDE" >
<![%SVG.font-face-uri.element;[
<!ENTITY % SVG.font-face-uri.content
 "(%SVG.font-face-format.qname; %SVG.font-fac\

e-uri.extra.content;)*"
>
<!ELEMENT %SVG.font-face-uri.qname; %SVG.font-face-uri.\

content; >
<!-- end of SVG.font-face-uri.element -->]]>
<!ENTITY % SVG.font-face-uri.attlist "INCLUDE" >
<![%SVG.font-face-uri.attlist;[
<!ATTLIST %SVG.font-face-uri.qname;

 %SVG.Core.attrib;

 %SVG.XLinkRequired.attrib;

>
<!-- end of SVG.font-face-uri.attlist -->]]>
<!-- font-face-format: Font Face Format Element -->
<!ENTITY % SVG.font-face-format.element "INCLUDE" >
<![%SVG.font-face-format.element;[
<!ENTITY % SVG.font-face-format.content "EMPTY" >
<!ELEMENT %SVG.font-face-format.qname; %SVG.font-fac\

e-format.content; >
<!-- end of SVG.font-face-format.element -->]]>
<!ENTITY % SVG.font-face-format.attlist "INCLUDE" >
<![%SVG.font-face-format.attlist;[
<!ATTLIST %SVG.font-face-format.qname;

 %SVG.Core.attrib;

 string CDATA #IMPLIED
>
<!-- end of SVG.font-face-format.attlist -->]]>
<!-- font-face-name: Font Face Name Element -->
<!ENTITY % SVG.font-face-name.element "INCLUDE" >
<![%SVG.font-face-name.element;[
<!ENTITY % SVG.font-face-name.content "EMPTY" >
<!ELEMENT %SVG.font-face-name.qname; %SVG.font-face-na\

me.content; >
<!-- end of SVG.font-face-name.element -->]]>
<!ENTITY % SVG.font-face-name.attlist "INCLUDE" >
<![%SVG.font-face-name.attlist;[
<!ATTLIST %SVG.font-face-name.qname;

 %SVG.Core.attrib;

 name CDATA #IMPLIED
>
<!-- end of SVG.font-face-name.attlist -->]]>
gt;

The 'definition-src' element corresponds to the 'definition-src' descriptor in CSS2. (Refer to description of the
['definition-src' descriptor] in CSS2 specification.)

http://www.w3.org/TR/SVG/fonts.html (16 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/REC-CSS2/fonts.html#descdef-definition-src

Fonts - SVG 1.1 - 20030114

<!ENTITY % SVG.definition-src.element "INCLUDE" >
<![%SVG.definition-src.element;[
<!ENTITY % SVG.definition-src.content "EMPTY" >
<!ELEMENT %SVG.definition-src.qname; %SVG.definition-\

src.content; >
<!-- end of SVG.definition-src.element -->]]>
<!ENTITY % SVG.definition-src.attlist "INCLUDE" >
<![%SVG.definition-src.attlist;[
<!ATTLIST %SVG.definition-src.qname;

 %SVG.Core.attrib;

 %SVG.XLinkRequired.attrib;

>

20.9 Font Module

Elements Attributes Content Model

font
Core.attrib, External.attrib, Style.attrib,
Presentation.attrib, horiz-origin-x, horiz-origin-y,
horiz-adv-x, vert-adv-y, vert-origin-x, vert-origin-y

(Description.class, font-face, missing-
glyph, (glyph | hkern | vkern)*)

font-face

Core.attrib, font-family, font-style, font-variant,
font-weight, font-stretch, font-size, unicode-range,
units-per-em, panose-1, stemv, stemh, slope, cap-
height, x-height, accent-height, ascent, descent,
widths, bbox, ideographic, alphabetic,
mathematical, hanging, v-ideographic, v-
alphabetic, v-mathematical, v-hanging, underline-
position, underline-thickness, strikethrough-
position, strikethrough-thickness, overline-
position, overline-thickness

(Description.class, font-face-src?,
definition-src?)

glyph

Core.attrib, Style.attrib, Presentation.attrib,
unicode, glyph-name, d, orientation, arabic-form,
lang, horiz-adv-x, vert-adv-y, vert-origin-x, vert-
origin-y

(Description.class | Structure.class |
Shape.class | Text.class | Image.class |
View.class | Conditional.class | Hyperlink.
class | Style.class | Marker.class | Clip.
class | Mask.class | Gradient.class |
Pattern.class | ColorProfile.class | Filter.
class | Cursor.class | Font.class |
Animation.class)*

missing-glyph
Core.attrib, Style.attrib, Presentation.attrib, d,
orientation, arabic-form, lang, horiz-adv-x, vert-
adv-y, vert-origin-x, vert-origin-y

(Description.class | Structure.class |
Shape.class | Text.class | Image.class |
View.class | Conditional.class | Hyperlink.
class | Style.class | Marker.class | Clip.
class | Mask.class | Gradient.class |
Pattern.class | ColorProfile.class | Filter.
class | Cursor.class | Font.class |
Animation.class)*

hkern Core.attrib, g1, g2, u1, u2, k EMPTY

vkern Core.attrib, g1, g2, u1, u2, k EMPTY

font-face-src Core.attrib (font-face-uri|font-face-name)+

font-face-uri Core.attrib, XLinkRequired.attrib font-face-format*

http://www.w3.org/TR/SVG/fonts.html (17 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

font-face-format Core.attrib, string EMPTY

font-face-name Core.attrib, name EMPTY

defintion-src Core.attrib, XLinkRequired.attrib EMPTY

20.9.1 Font Content Set

The Font Module defines the Font.class content set.

Content Set Name Elements in Content Set

Font.class font

20.10 Basic Font Module

Elements Attributes Content Model

font
Core.attrib, External.attrib, Style.attrib,
Presentation.attrib, horiz-origin-x, horiz-adv-x

(Description.class, font-face, missing-glyph,
(glyph | hkern)*)

font-face

Core.attrib, font-family, font-style, font-variant,
font-weight, font-stretch, font-size, unicode-
range, units-per-em, panose-1, stemv, stemh,
slope, cap-height, x-height, accent-height,
ascent, descent, widths, bbox, ideographic,
alphabetic, mathematical, hanging, underline-
position, underline-thickness, strikethrough-
position, strikethrough-thickness, overline-
position, overline-thickness

(Description.class, font-face-src?)

glyph
Core.attrib, Style.attrib, unicode, glyph-name, d,
arabic-form, lang, horiz-adv-x

(Description.class)

missing-glyph
Core.attrib, Style.attrib, d, arabic-form, lang,
horiz-adv-x

(Description.class)

hkern Core.attrib, g1, g2, u1, u2, k EMPTY

font-face-src Core.attrib (font-face-name)+

font-face-name Core.attrib, name EMPTY

20.10.1 Basic Font Content Set

The Basic Font Module defines the Font.class content set.

Content Set Name Elements in Content Set

Font.class font

20.11 DOM interfaces

The following interfaces are defined below: SVGFontElement, SVGGlyphElement, SVGMissingGlyphElement,
SVGHKernElement, SVGVKernElement, SVGFontFaceElement, SVGFontFaceSrcElement,
SVGFontFaceUriElement, SVGFontFaceFormatElement, SVGFontFaceNameElement,
SVGDefinitionSrcElement.

http://www.w3.org/TR/SVG/fonts.html (18 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

Interface SVGFontElement

The SVGFontElement interface corresponds to the 'font' element.

Object-oriented access to the attributes of the 'font' element via the SVG DOM is not available.

IDL Definition

interface SVGFontElement :
 SVGElement,
 SVGExternalResourcesRequired,
 SVGStylable {};

Interface SVGGlyphElement

The SVGGlyphElement interface corresponds to the 'glyph' element.

Object-oriented access to the attributes of the 'glyph' element via the SVG DOM is not available.

IDL Definition

interface SVGGlyphElement :
 SVGElement,
 SVGStylable {};

Interface SVGMissingGlyphElement

The SVGMissingGlyphElement interface corresponds to the 'missing-glyph' element.

Object-oriented access to the attributes of the 'missing-glyph' element via the SVG DOM is not available.

IDL Definition

interface SVGMissingGlyphElement :
 SVGElement,
 SVGStylable {};

http://www.w3.org/TR/SVG/fonts.html (19 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

Interface SVGHKernElement

The SVGHKernElement interface corresponds to the 'hkern' element.

Object-oriented access to the attributes of the 'hkern' element via the SVG DOM is not available.

IDL Definition

interface SVGHKernElement : SVGElement {};

Interface SVGVKernElement

The SVGVKernElement interface corresponds to the 'vkern' element.

Object-oriented access to the attributes of the 'vkern' element via the SVG DOM is not available.

IDL Definition

interface SVGVKernElement : SVGElement {};

Interface SVGFontFaceElement

The SVGFontFaceElement interface corresponds to the 'font-face' element.

Object-oriented access to the attributes of the 'font-face' element via the SVG DOM is not available.

IDL Definition

interface SVGFontFaceElement : SVGElement {};

Interface SVGFontFaceSrcElement

The SVGFontFaceSrcElement interface corresponds to the 'font-face-src' element.

IDL Definition

http://www.w3.org/TR/SVG/fonts.html (20 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

interface SVGFontFaceSrcElement : SVGElement {};

Interface SVGFontFaceUriElement

The SVGFontFaceUriElement interface corresponds to the 'font-face-uri' element.

Object-oriented access to the attributes of the 'font-face-uri' element via the SVG DOM is not available.

IDL Definition

interface SVGFontFaceUriElement : SVGElement {};

Interface SVGFontFaceFormatElement

The SVGFontFaceFormatElement interface corresponds to the 'font-face-format' element.

Object-oriented access to the attributes of the 'font-face-format' element via the SVG DOM is not available.

IDL Definition

interface SVGFontFaceFormatElement : SVGElement {};

Interface SVGFontFaceNameElement

The SVGFontFaceNameElement interface corresponds to the 'font-face-name' element.

Object-oriented access to the attributes of the 'font-face-name' element via the SVG DOM is not available.

IDL Definition

interface SVGFontFaceNameElement : SVGElement {};

Interface SVGDefinitionSrcElement

http://www.w3.org/TR/SVG/fonts.html (21 of 22)4/2/07 7:28 PM

Fonts - SVG 1.1 - 20030114

The SVGDefinitionSrcElement interface corresponds to the 'definition-src' element.

Object-oriented access to the attributes of the 'definition-src' element via the SVG DOM is not available.

IDL Definition

interface SVGDefinitionSrcElement : SVGElement {};

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/fonts.html (22 of 22)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Metadata - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

21 Metadata

Contents

● 21.1 Introduction
● 21.2 The 'metadata' element
● 21.3 An example
● 21.4 DOM interfaces

21.1 Introduction

Metadata is structured data about data.

In the computing industry, there are ongoing standardization efforts towards metadata with the goal of
promoting industry interoperability and efficiency. Content creators should track these developments and
include appropriate metadata in their SVG content which conforms to these various metadata standards as
they emerge.

The W3C has a Semantic Web Activity which has been established to serve a leadership role, in both the
design of enabling specifications and the open, collaborative development of technologies that support the
automation, integration and reuse of data across various applications. The Semantic Web Activity builds upon
the earlier W3C Metadata Activity, including the definition of Resource Description Framework (RDF). The
specifications for RDF can be found at:

● Resource Description Framework Model and Syntax Specification
● Resource Description Framework (RDF) Schema Specification

Another activity relevant to most applications of metadata is the Dublin Core, which is a set of generally
applicable core metadata properties (e.g., Title, Creator/Author, Subject, Description, etc.).

Individual industries or individual content creators are free to define their own metadata schema but are
encouraged to follow existing metadata standards and use standard metadata schema wherever possible to
promote interchange and interoperability. If a particular standard metadata schema does not meet your
needs, then it is usually better to define an additional metadata schema in an existing framework such as RDF
and to use custom metadata schema in combination with standard metadata schema, rather than totally
ignore the standard schema.

http://www.w3.org/TR/SVG/metadata.html (1 of 3)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/backward.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/2001/sw/Activity
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://purl.org/DC/

Metadata - SVG 1.1 - 20030114

21.2 The 'metadata' element

Metadata which is included with SVG content should be specified within 'metadata' elements. The contents of
the 'metadata' should be elements from other XML namespaces, with these elements from these namespaces
expressed in a manner conforming with the "Namespaces in XML" Recommendation [XML-NS].

Authors should provide a 'metadata' child element to the outermost 'svg' element within a stand-alone SVG
document. The 'metadata' child element to an 'svg' element serves the purposes of identifying document-level
metadata.

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no restriction
on the placement or number of the 'metadata' sub-elements. This flexibility is only present so that there will be
a consistent content model for container elements, because some container elements in SVG allow for mixed
content, and because the mixed content rules for XML [XML-MIXED] do not permit the desired restrictions.
Representations of future versions of the SVG language might use more expressive representations than
DTDs which allow for more restrictive mixed content rules. It is strongly recommended that at most one
'metadata' element appear as a child of any particular element, and that this element appear before any other
child elements (except possibly 'desc' or 'title' elements) or character data content. If metadata-processing
user agents need to choose among multiple 'metadata' elements for processing it should choose the first one.

<!ENTITY % SVG.metadata.extra.content "" >
<!ENTITY % SVG.metadata.element "INCLUDE" >
<![%SVG.metadata.element;[
<!ENTITY % SVG.metadata.content
 "(#PCDATA %SVG.metadata.extra.content;)*"
>
<!ELEMENT %SVG.metadata.qname; %SVG.metadata.content; >

<!-- end of SVG.metadata.element -->]]>
<!ENTITY % SVG.metadata.attlist "INCLUDE" >
<![%SVG.metadata.attlist;[
<!ATTLIST %SVG.metadata.qname;

 %SVG.Core.attrib;

>

21.3 An example

Here is an example of how metadata can be included in an SVG document. The example uses the Dublin
Core version 1.1 schema. (Other XML-compatible metadata languages, including ones not based on RDF,
can be used also.)

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>
 <desc xmlns:myfoo="http://example.org/myfoo">
 <myfoo:title>This is a financial report</myfoo:title>
 <myfoo:descr>The global description uses markup from the
 <myfoo:emph>myfoo</myfoo:emph> namespace.</myfoo:descr>
 <myfoo:scene><myfoo:what>widget $growth</myfoo:what>
 <myfoo:contains>$three $graph-bar</myfoo:contains>
 <myfoo:when>1998 $through 2000</myfoo:when> </myfoo:scene>
 </desc>
 <metadata>
 <rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"

http://www.w3.org/TR/SVG/metadata.html (2 of 3)4/2/07 7:28 PM

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml#sec-mixed-content

Metadata - SVG 1.1 - 20030114

 xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc = "http://purl.org/dc/elements/1.1/" >
 <rdf:Description about="http://example.org/myfoo"
 dc:title="MyFoo Financial Report"
 dc:description="$three $bar $thousands $dollars $from 1998 $through 2000"
 dc:publisher="Example Organization"
 dc:date="2000-04-11"
 dc:format="image/svg+xml"
 dc:language="en" >
 <dc:creator>
 <rdf:Bag>
 <rdf:li>Irving Bird</rdf:li>
 <rdf:li>Mary Lambert</rdf:li>
 </rdf:Bag>
 </dc:creator>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
</svg>

21.4 DOM interfaces

The following interfaces are defined below: SVGMetadataElement.

Interface SVGMetadataElement

The SVGMetadataElement interface corresponds to the 'metadata' element.

IDL Definition

interface SVGMetadataElement : SVGElement {};

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/metadata.html (3 of 3)4/2/07 7:28 PM

http://www.w3.org/TR/SVG/backward.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Attribute Index - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

Appendix M: Attribute Index

Attribute or entity which defines a
collection of attributes

Used in these elements and entities Value Type Default

%PresentationAttributes-All;
feImage, svg, g, defs, symbol, use,
switch, marker, pattern, mask, filter, a,
font, glyph, missing-glyph, foreignObject

%PresentationAttributes-Color;

PresentationAttributes-All, image, path,
rect, circle, ellipse, line, polyline,
polygon, text, tspan, tref, textPath,
altGlyph, linearGradient, radialGradient,
stop, clipPath, feDiffuseLighting,
feFlood, feSpecularLighting

%PresentationAttributes-Containers; PresentationAttributes-All

%PresentationAttributes-FillStroke;

PresentationAttributes-All, path, rect,
circle, ellipse, line, polyline, polygon,
text, tspan, tref, textPath, altGlyph,
clipPath

%PresentationAttributes-FilterPrimitives;

PresentationAttributes-All, feBlend,
feColorMatrix, feComponentTransfer,
feComposite, feConvolveMatrix,
feDiffuseLighting, feDisplacementMap,
feFlood, feGaussianBlur, feMerge,
feMorphology, feOffset,
feSpecularLighting, feTile, feTurbulence

%PresentationAttributes-
FontSpecification;

PresentationAttributes-All, text, tspan,
tref, textPath, altGlyph, glyphRef,
clipPath

http://www.w3.org/TR/SVG/attindex.html (1 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

%PresentationAttributes-Gradients;
PresentationAttributes-All,
linearGradient, radialGradient, stop

%PresentationAttributes-Graphics;

PresentationAttributes-All, image, path,
rect, circle, ellipse, line, polyline,
polygon, text, tspan, tref, textPath,
altGlyph, clipPath

%PresentationAttributes-Images; PresentationAttributes-All, image

%PresentationAttributes-LightingEffects;
PresentationAttributes-All,
feDiffuseLighting, feSpecularLighting

%PresentationAttributes-Markers;
PresentationAttributes-All, path, line,
polyline, polygon

%PresentationAttributes-TextContent.
class;

PresentationAttributes-All, text, tspan,
tref, textPath, altGlyph, clipPath

%PresentationAttributes-Text.class; PresentationAttributes-All, text, clipPath

%PresentationAttributes-Viewports; PresentationAttributes-All, image

%PresentationAttributes-feFlood; PresentationAttributes-All, feFlood

%animAdditionAttrs;
animate, animateColor, animateMotion,
animateTransform

%animAttributeAttrs;
animate, set, animateColor,
animateTransform

%animElementAttrs;
animate, set, animateMotion,
animateColor, animateTransform

%animTimingAttrs;
animate, set, animateMotion,
animateColor, animateTransform

%animValueAttrs;
animate, animateColor,
animateTransform

%animationEvents;
animate, set, animateMotion,
animateColor, animateTransform

%
component_transfer_function_attributes;

feFuncR, feFuncG, feFuncB, feFuncA

%documentEvents; svg

%filter_primitive_attributes; feMerge, feTurbulence

http://www.w3.org/TR/SVG/attindex.html (2 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

%filter_primitive_attributes_with_in;

feComponentTransfer, feFlood, feTile,
feBlend, feColorMatrix, feComposite,
feConvolveMatrix, feDiffuseLighting,
feDisplacementMap, feGaussianBlur,
feMorphology, feOffset,
feSpecularLighting

%graphicsElementEvents;

g, defs, symbol, switch, svg, use,
image, path, rect, circle, ellipse, line,
polyline, polygon, text, tspan, tref,
textPath, altGlyph, a, foreignObject

%langSpaceAttrs;

svg, g, defs, desc, title, symbol, use,
image, switch, path, rect, circle, ellipse,
line, polyline, polygon, text, tspan, tref,
textPath, altGlyph, marker, pattern,
clipPath, mask, filter, feImage, a,
foreignObject

%stdAttrs;

altGlyphDef, altGlyphItem, font-face-
src, metadata, svg, g, defs, desc, title,
symbol, use, image, switch, style, path,
rect, circle, ellipse, line, polyline,
polygon, text, tspan, tref, textPath,
altGlyph, glyphRef, marker, color-
profile, linearGradient, radialGradient,
stop, pattern, clipPath, mask, filter,
feDistantLight, fePointLight,
feSpotLight, feBlend, feColorMatrix,
feComponentTransfer, feFuncR,
feFuncG, feFuncB, feFuncA,
feComposite, feConvolveMatrix,
feDiffuseLighting, feDisplacementMap,
feFlood, feGaussianBlur, feImage,
feMerge, feMergeNode, feMorphology,
feOffset, feSpecularLighting, feTile,
feTurbulence, cursor, a, view, script,
animate, set, animateMotion, mpath,
animateColor, animateTransform, font,
glyph, missing-glyph, hkern, vkern, font-
face, font-face-uri, font-face-format, font-
face-name, definition-src, foreignObject

http://www.w3.org/TR/SVG/attindex.html (3 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

%testAttrs;

svg, g, defs, use, image, switch, path,
rect, circle, ellipse, line, polyline,
polygon, text, tspan, tref, textPath,
altGlyph, pattern, clipPath, mask,
cursor, a, animate, set, animateMotion,
animateColor, animateTransform,
foreignObject

%xlinkRefAttrs;

tref, textPath, altGlyph, glyphRef, color-
profile, linearGradient, radialGradient,
pattern, filter, cursor, script, mpath, font-
face-uri, definition-src

%xlinkRefAttrsEmbed; use, image, feImage

accent-height font-face %Number; #IMPLIED

accumulate animAdditionAttrs (none | sum) none

alignment-baseline
PresentationAttributes-TextContent.
class

(baseline | top | before-edge |
text-top | text-before-edge |
middle | bottom | after-edge | text-
bottom | text-after-edge |
ideographic | lower | hanging |
mathematical | inherit)

alphabetic font-face %Number; #IMPLIED

amplitude component_transfer_function_attributes %Number; #IMPLIED

animate filter

arabic-form glyph CDATA #IMPLIED

ascent font-face %Number; #IMPLIED

attributeType animAttributeAttrs CDATA #IMPLIED

azimuth feDistantLight %Number; #IMPLIED

baseFrequency feTurbulence %NumberOptionalNumber; #IMPLIED

baseline-shift
PresentationAttributes-TextContent.
class

%BaselineShiftValue; #IMPLIED

baseProfile svg CDATA #IMPLIED "none"

bbox font-face CDATA #IMPLIED

bias feConvolveMatrix %Number; #IMPLIED

by animValueAttrs, animateMotion CDATA #IMPLIED

calcMode animateMotion (discrete | linear | paced | spline) paced

http://www.w3.org/TR/SVG/attindex.html (4 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

cap-height font-face %Number; #IMPLIED

class

svg, g, defs, desc, title, symbol, use,
image, switch, path, rect, circle, ellipse,
line, polyline, polygon, text, tspan, tref,
textPath, altGlyph, glyphRef, marker,
linearGradient, radialGradient, stop,
pattern, clipPath, mask, filter,
feDiffuseLighting, feFlood, feImage,
feSpecularLighting, a, font, glyph,
missing-glyph, foreignObject

%ClassList; #IMPLIED

clip PresentationAttributes-Viewports %ClipValue; #IMPLIED

clip-path PresentationAttributes-Graphics %ClipPathValue; #IMPLIED

clip-rule PresentationAttributes-Graphics %ClipFillRule; #IMPLIED

clipPathUnits clipPath (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

color PresentationAttributes-Color %Color; #IMPLIED

color-interpolation PresentationAttributes-Color
(auto | sRGB | linearRGB |
inherit)

#IMPLIED

color-interpolation-filters PresentationAttributes-FilterPrimitives
(auto | sRGB | linearRGB |
inherit)

#IMPLIED

color-profile PresentationAttributes-Images CDATA #IMPLIED

color-rendering PresentationAttributes-Color
(auto | optimizeSpeed |
optimizeQuality | inherit)

#IMPLIED

contentScriptType svg %ContentType;
text/
ecmascript

contentStyleType svg %ContentType;

cursor PresentationAttributes-Graphics %CursorValue; #IMPLIED

cx circle, ellipse, radialGradient %Coordinate; #IMPLIED

cy circle, ellipse, radialGradient %Coordinate; #IMPLIED

d glyph, missing-glyph %PathData; #IMPLIED

d path %PathData; #REQUIRED

descent font-face %Number; #IMPLIED

diffuseConstant feDiffuseLighting %Number; #IMPLIED

direction
PresentationAttributes-TextContent.
class

(ltr | rtl | inherit) #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (5 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

display PresentationAttributes-Graphics

(inline | block | list-item | run-in |
compact | marker | table | inline-
table | table-row-group | table-
header-group | table-footer-
group | table-row | table-column-
group | table-column | table-cell |
table-caption | none | inherit)

divisor feConvolveMatrix %Number; #IMPLIED

dominant-baseline
PresentationAttributes-TextContent.
class

(auto

dur animTimingAttrs CDATA #IMPLIED

dx text, tspan, tref, altGlyph %Lengths; #IMPLIED

dx glyphRef, feOffset %Number; #IMPLIED

dy text, tspan, tref, altGlyph %Lengths; #IMPLIED

dy glyphRef, feOffset %Number; #IMPLIED

edgeMode feConvolveMatrix (duplicate|wrap|none) duplicate

elevation feDistantLight %Number; #IMPLIED

enable-background PresentationAttributes-Containers %EnableBackgroundValue; #IMPLIED

end animTimingAttrs CDATA #IMPLIED

exponent component_transfer_function_attributes %Number; #IMPLIED

externalResourcesRequired

g, defs, symbol, use, image, switch,
path, rect, circle, ellipse, line, polyline,
polygon, text, tspan, tref, textPath,
altGlyph, marker, linearGradient,
radialGradient, pattern, clipPath, mask,
filter, feImage, cursor, a, view, script,
animate, set, animateMotion,
animateColor, animateTransform, font,
foreignObject, svg, mpath

%Boolean; #IMPLIED

feColorMatrix filter

feComposite filter

feGaussianBlur filter

feMorphology filter

feTile filter

fill animTimingAttrs (remove | freeze) remove

http://www.w3.org/TR/SVG/attindex.html (6 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

fill PresentationAttributes-FillStroke %Paint; #IMPLIED

fill-opacity PresentationAttributes-FillStroke %OpacityValue; #IMPLIED

fill-rule PresentationAttributes-FillStroke %ClipFillRule; #IMPLIED

filter PresentationAttributes-Graphics %FilterValue; #IMPLIED

filterRes filter %NumberOptionalNumber; #IMPLIED

filterUnits filter (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

flood-color PresentationAttributes-feFlood %SVGColor; #IMPLIED

flood-opacity PresentationAttributes-feFlood %OpacityValue; #IMPLIED

font-family PresentationAttributes-FontSpecification %FontFamilyValue; #IMPLIED

font-family font-face CDATA #IMPLIED

font-size PresentationAttributes-FontSpecification %FontSizeValue; #IMPLIED

font-size font-face CDATA #IMPLIED

font-size-adjust PresentationAttributes-FontSpecification %FontSizeAdjustValue; #IMPLIED

font-stretch PresentationAttributes-FontSpecification (normal

font-stretch font-face

(normal | wider | narrower | ultra-
condensed | extra-condensed |
condensed | semi-condensed |
semi-expanded | expanded |
extra-expanded | ultra-expanded
| inherit)

font-style PresentationAttributes-FontSpecification (normal | italic | oblique | inherit) #IMPLIED

font-style font-face CDATA #IMPLIED

font-variant PresentationAttributes-FontSpecification (normal | small-caps | inherit) #IMPLIED

font-variant font-face CDATA #IMPLIED

font-weight PresentationAttributes-FontSpecification (normal

font-weight font-face
(normal | bold | bolder | lighter |
100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900 | inherit)

format altGlyph, glyphRef CDATA #IMPLIED

from animValueAttrs, animateMotion CDATA #IMPLIED

fx radialGradient %Coordinate; #IMPLIED

fy radialGradient %Coordinate; #IMPLIED

g1 hkern, vkern CDATA #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (7 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

g2 hkern, vkern CDATA #IMPLIED

glyph-name glyph CDATA #IMPLIED

glyph-orientation-horizontal
PresentationAttributes-TextContent.
class

%
GlyphOrientationHorizontalValue;

#IMPLIED

glyph-orientation-vertical
PresentationAttributes-TextContent.
class

%GlyphOrientationVerticalValue; #IMPLIED

glyphRef altGlyph, glyphRef CDATA #IMPLIED

gradientTransform linearGradient, radialGradient %TransformList; #IMPLIED

gradientUnits linearGradient, radialGradient (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

hanging font-face %Number; #IMPLIED

height
svg, filter, filter_primitive_attributes,
use, pattern, mask

%Length; #IMPLIED

height rect, foreignObject, image %Length; #REQUIRED

horiz-adv-x glyph, missing-glyph %Number; #IMPLIED

horiz-adv-x font %Number; #REQUIRED

horiz-origin-x font %Number; #IMPLIED

horiz-origin-y font %Number; #IMPLIED

ideographic font-face %Number; #IMPLIED

image-rendering PresentationAttributes-Graphics
(auto | optimizeSpeed |
optimizeQuality | inherit)

#IMPLIED

in
filter_primitive_attributes_with_in,
feMergeNode CDATA #IMPLIED

in2
feBlend, feComposite,
feDisplacementMap

CDATA #REQUIRED

intercept component_transfer_function_attributes %Number; #IMPLIED

k hkern, vkern %Number; #REQUIRED

k1 feComposite %Number; #IMPLIED

k2 feComposite %Number; #IMPLIED

k3 feComposite %Number; #IMPLIED

k4 feComposite %Number; #IMPLIED

kernelMatrix feConvolveMatrix CDATA #REQUIRED

http://www.w3.org/TR/SVG/attindex.html (8 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

kernelUnitLength
feConvolveMatrix, feDiffuseLighting,
feSpecularLighting

%NumberOptionalNumber; #IMPLIED

kerning
PresentationAttributes-TextContent.
class

%KerningValue; #IMPLIED

keyPoints animateMotion CDATA #IMPLIED

keySplines animValueAttrs, animateMotion CDATA #IMPLIED

keyTimes animValueAttrs, animateMotion CDATA #IMPLIED

lang glyph %LanguageCodes; #IMPLIED

lengthAdjust textPath, text, tspan, tref (spacing|spacingAndGlyphs) #IMPLIED

letter-spacing
PresentationAttributes-TextContent.
class

%SpacingValue; #IMPLIED

lighting-color PresentationAttributes-LightingEffects %SVGColor; #IMPLIED

limitingConeAngle feSpotLight %Number; #IMPLIED

local color-profile CDATA #IMPLIED

marker-end PresentationAttributes-Markers %MarkerValue; #IMPLIED

marker-mid PresentationAttributes-Markers %MarkerValue; #IMPLIED

marker-start PresentationAttributes-Markers %MarkerValue; #IMPLIED

markerHeight marker %Length; #IMPLIED

markerUnits marker (strokeWidth | userSpaceOnUse) #IMPLIED

markerWidth marker %Length; #IMPLIED

mask PresentationAttributes-Graphics %MaskValue; #IMPLIED

maskContentUnits mask (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

maskUnits mask (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

mathematical font-face %Number; #IMPLIED

max animTimingAttrs CDATA #IMPLIED

media style %MediaDesc; #IMPLIED

method textPath (align|stretch) #IMPLIED

min animTimingAttrs CDATA #IMPLIED

mode feBlend (normal | multiply | screen |
darken | lighten)

name color-profile CDATA #REQUIRED

http://www.w3.org/TR/SVG/attindex.html (9 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

numOctaves feTurbulence %Integer; #IMPLIED

offset stop %NumberOrPercentage; #REQUIRED

offset component_transfer_function_attributes %Number; #IMPLIED

onabort documentEvents %Script; #IMPLIED

onactivate graphicsElementEvents %Script; #IMPLIED

onbegin animationEvents %Script; #IMPLIED

onclick graphicsElementEvents %Script; #IMPLIED

onend animationEvents %Script; #IMPLIED

onerror documentEvents %Script; #IMPLIED

onfocusin graphicsElementEvents %Script; #IMPLIED

onfocusout graphicsElementEvents %Script; #IMPLIED

onload graphicsElementEvents %Script; #IMPLIED

onmousedown graphicsElementEvents %Script; #IMPLIED

onmousemove graphicsElementEvents %Script; #IMPLIED

onmouseout graphicsElementEvents %Script; #IMPLIED

onmouseover graphicsElementEvents %Script; #IMPLIED

onmouseup graphicsElementEvents %Script; #IMPLIED

onrepeat animationEvents %Script; #IMPLIED

onresize documentEvents %Script; #IMPLIED

onscroll documentEvents %Script; #IMPLIED

onunload documentEvents %Script; #IMPLIED

onzoom documentEvents %Script; #IMPLIED

opacity PresentationAttributes-Graphics %OpacityValue; #IMPLIED

operator feMorphology (erode | dilate) erode

operator feComposite (over | in | out | atop | xor |
arithmetic)

 over

order feConvolveMatrix %NumberOptionalNumber; #REQUIRED

orient marker CDATA #IMPLIED

orientation glyph CDATA #IMPLIED

origin animateMotion CDATA #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (10 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

overflow PresentationAttributes-Viewports
(visible | hidden | scroll | auto |
inherit)

#IMPLIED

overline-position font-face %Number; #IMPLIED

overline-thickness font-face %Number; #IMPLIED

panose-1 font-face CDATA #IMPLIED

path animateMotion CDATA #IMPLIED

pathLength path %Number; #IMPLIED

patternContentUnits pattern (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

patternTransform pattern %TransformList; #IMPLIED

patternUnits pattern (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

pointer-events PresentationAttributes-Graphics
(visiblePainted | visibleFill |
visibleStroke | visible | painted |
fill | stroke | all | none | inherit)

points polyline, polygon %Points; #REQUIRED

pointsAtX feSpotLight %Number; #IMPLIED

pointsAtY feSpotLight %Number; #IMPLIED

pointsAtZ feSpotLight %Number; #IMPLIED

preserveAlpha feConvolveMatrix %Boolean; #IMPLIED

preserveAspectRatio
svg, symbol, image, marker, pattern,
view

%PreserveAspectRatioSpec;
xMidYMid
meet

primitiveUnits filter (userSpaceOnUse |
objectBoundingBox)

#IMPLIED

r radialGradient %Length; #IMPLIED

r circle %Length; #REQUIRED

radius feMorphology %NumberOptionalNumber; #IMPLIED

refX marker %Coordinate; #IMPLIED

refY marker %Coordinate; #IMPLIED

rendering-intent color-profile
(auto | perceptual | relative-
colorimetric | saturation |
absolute-colorimetric)

repeatCount animTimingAttrs CDATA #IMPLIED

repeatDur animTimingAttrs CDATA #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (11 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

requiredExtensions testAttrs %ExtensionList; #IMPLIED

restart animTimingAttrs (always | never | whenNotActive) always

result filter_primitive_attributes CDATA #IMPLIED

rotate animateMotion CDATA #IMPLIED

rotate text, tspan, tref, altGlyph %Numbers; #IMPLIED

rx rect %Length; #IMPLIED

rx ellipse %Length; #REQUIRED

ry rect %Length; #IMPLIED

ry ellipse %Length; #REQUIRED

scale feDisplacementMap %Number; #IMPLIED

seed feTurbulence %Number; #IMPLIED

shape-rendering PresentationAttributes-Graphics
(auto | optimizeSpeed |
crispEdges | geometricPrecision
| inherit)

#IMPLIED

slope
component_transfer_function_attributes,
font-face

%Number; #IMPLIED

spacing textPath (auto|exact) #IMPLIED

specularConstant feSpecularLighting %Number; #IMPLIED

specularExponent feSpotLight, feSpecularLighting %Number; #IMPLIED

spreadMethod linearGradient, radialGradient (pad | reflect | repeat) #IMPLIED

startOffset textPath %Length; #IMPLIED

stdDeviation feGaussianBlur %NumberOptionalNumber; #IMPLIED

stemh font-face %Number; #IMPLIED

stemv font-face %Number; #IMPLIED

stitchTiles feTurbulence (stitch | noStitch) noStitch

stop-color PresentationAttributes-Gradients %SVGColor; #IMPLIED

stop-opacity PresentationAttributes-Gradients %OpacityValue; #IMPLIED

strikethrough-position font-face %Number; #IMPLIED

strikethrough-thickness font-face %Number; #IMPLIED

stroke PresentationAttributes-FillStroke %Paint; #IMPLIED

stroke-dasharray PresentationAttributes-FillStroke %StrokeDashArrayValue; #IMPLIED

stroke-dashoffset PresentationAttributes-FillStroke %StrokeDashOffsetValue; #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (12 of 16)4/2/07 7:47 PM

Attribute Index - SVG 1.1 - 20030114

stroke-linecap PresentationAttributes-FillStroke (butt | round | square | inherit) #IMPLIED

stroke-linejoin PresentationAttributes-FillStroke (miter | round | bevel | inherit) #IMPLIED

stroke-miterlimit PresentationAttributes-FillStroke %StrokeMiterLimitValue; #IMPLIED

stroke-opacity PresentationAttributes-FillStroke %OpacityValue; #IMPLIED

stroke-width PresentationAttributes-FillStroke %StrokeWidthValue; #IMPLIED

style

svg, g, defs, desc, title, symbol, use,
image, switch, path, rect, circle, ellipse,
line, polyline, polygon, text, tspan, tref,
textPath, altGlyph, glyphRef, marker,
linearGradient, radialGradient, stop,
pattern, clipPath, mask, filter, feImage,
a, font, glyph, missing-glyph,
foreignObject

%StyleSheet; #IMPLIED

surfaceScale feDiffuseLighting, feSpecularLighting %Number; #IMPLIED

systemLanguage testAttrs %LanguageCodes; #IMPLIED

tableValues component_transfer_function_attributes CDATA #IMPLIED

target a %LinkTarget; #IMPLIED

targetX feConvolveMatrix %Integer; #IMPLIED

targetY feConvolveMatrix %Integer; #IMPLIED

text-anchor
PresentationAttributes-TextContent.
class

(start | middle | end | inherit) #IMPLIED

text-decoration
PresentationAttributes-TextContent.
class

%TextDecorationValue; #IMPLIED

text-rendering PresentationAttributes-Graphics
(auto | optimizeSpeed |
optimizeLegibility |
geometricPrecision | inherit)

#IMPLIED

textLength text, tspan, tref, textPath %Length; #IMPLIED

title style %Text; #IMPLIED

to animValueAttrs, animateMotion, set CDATA #IMPLIED

transform
g, defs, use, image, switch, path, rect,
circle, ellipse, line, polyline, polygon,
text, clipPath, a, foreignObject

%TransformList; #IMPLIED

type style, script %ContentType; #REQUIRED

type feTurbulence (fractalNoise | turbulence)

http://www.w3.org/TR/SVG/attindex.html (13 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

type component_transfer_function_attributes (identity | table | discrete | linear |
gamma)

type feColorMatrix (matrix | saturate | hueRotate |
luminanceToAlpha)

 matrix

type animateTransform (translate | scale | rotate | skewX
| skewY)

u1 hkern, vkern CDATA #IMPLIED

u2 hkern, vkern CDATA #IMPLIED

underline-position font-face %Number; #IMPLIED

underline-thickness font-face %Number; #IMPLIED

unicode glyph CDATA #IMPLIED

unicode-bidi
PresentationAttributes-TextContent.
class

(normal | embed | bidi-override |
inherit)

#IMPLIED

unicode-range font-face CDATA #IMPLIED

units-per-em font-face %Number; #IMPLIED

v-alphabetic font-face %Number; #IMPLIED

v-hanging font-face %Number; #IMPLIED

v-ideographic font-face %Number; #IMPLIED

v-mathematical font-face %Number; #IMPLIED

values
animValueAttrs, animateMotion,
feColorMatrix

CDATA #IMPLIED

version svg %Number; #REQUIRED

vert-adv-y font, glyph, missing-glyph %Number; #IMPLIED

vert-origin-x font, glyph, missing-glyph %Number; #IMPLIED

vert-origin-y font, glyph, missing-glyph %Number; #IMPLIED

viewBox svg, symbol, marker, pattern, view %ViewBoxSpec; #IMPLIED

viewTarget view CDATA #IMPLIED

visibility PresentationAttributes-Graphics (visible | hidden | inherit) #IMPLIED

width
svg, use, pattern, mask, filter,
filter_primitive_attributes

%Length; #IMPLIED

width image, rect, foreignObject %Length; #REQUIRED

widths font-face CDATA #IMPLIED

http://www.w3.org/TR/SVG/attindex.html (14 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

word-spacing
PresentationAttributes-TextContent.
class

%SpacingValue; #IMPLIED

writing-mode PresentationAttributes-Text.class
(lr-tb | rl-tb | tb-rl | lr | rl | tb |
inherit)

#IMPLIED

x
svg, use, image, rect, pattern, mask,
filter, filter_primitive_attributes, cursor,
foreignObject

%Coordinate; #IMPLIED

x text, tspan, tref, altGlyph %Coordinates; #IMPLIED

x glyphRef, fePointLight, feSpotLight %Number; #IMPLIED

x-height font-face %Number; #IMPLIED

x1 line, linearGradient %Coordinate; #IMPLIED

x2 line, linearGradient %Coordinate; #IMPLIED

xChannelSelector feDisplacementMap (R | G | B | A) A

xlink:actuate xlinkRefAttrs, xlinkRefAttrsEmbed (onLoad) #FIXED onLoad

xlink:actuate a (onRequest) #FIXED onRequest

xlink:arcrole xlinkRefAttrs, xlinkRefAttrsEmbed, a %URI; #IMPLIED

xlink:href
glyphRef, color-profile, linearGradient,
radialGradient, pattern, filter, script,
animElementAttrs, altGlyph

%URI; #IMPLIED

xlink:href
use, image, tref, textPath, feImage,
cursor, a, mpath, font-face-uri, definition-
src

%URI; #REQUIRED

xlink:role xlinkRefAttrs, xlinkRefAttrsEmbed, a %URI; #IMPLIED

xlink:show xlinkRefAttrsEmbed (embed) embed

xlink:show a (new|replace) replace

xlink:show xlinkRefAttrs (other) other

xlink:title xlinkRefAttrs, xlinkRefAttrsEmbed, a CDATA #IMPLIED

xlink:type xlinkRefAttrs, xlinkRefAttrsEmbed, a (simple) #FIXED simple

xml:base stdAttrs %URI; #IMPLIED

xml:space langSpaceAttrs (default|preserve) #IMPLIED

xml:space style (preserve) #FIXED preserve

http://www.w3.org/TR/SVG/attindex.html (15 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Attribute Index - SVG 1.1 - 20030114

xmlns svg CDATA #FIXED

http://www.
w3.
org/2000/
svg

xmlns:xlink a CDATA #FIXED

http://www.
w3.
org/1999/
xlink

y
svg, use, image, rect, pattern, mask,
filter, filter_primitive_attributes,
foreignObject, cursor

%Coordinate; #IMPLIED

y text, tspan, tref, altGlyph %Coordinates; #IMPLIED

y glyphRef, fePointLight, feSpotLight %Number; #IMPLIED

y1 line, linearGradient %Coordinate; #IMPLIED

y2 linearGradient, line %Coordinate; #IMPLIED

yChannelSelector feDisplacementMap (R | G | B | A)

z feSpotLight, fePointLight %Number; #IMPLIED

zoomAndPan svg, view (disable | magnify) magnify

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/attindex.html (16 of 16)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Element Index - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

Appendix L: Element Index

The following are the elements in the SVG language:

● a
● altGlyph
● altGlyphDef
● altGlyphItem
● animate
● animateColor
● animateMotion
● animateTransform
● circle
● clipPath
● color-profile
● cursor
● definition-src
● defs
● desc
● ellipse
● feBlend
● feColorMatrix
● feComponentTransfer
● feComposite
● feConvolveMatrix
● feDiffuseLighting
● feDisplacementMap
● feDistantLight
● feFlood

http://www.w3.org/TR/SVG/eltindex.html (1 of 3)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/refs.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Element Index - SVG 1.1 - 20030114

● feFuncA
● feFuncB
● feFuncG
● feFuncR
● feGaussianBlur
● feImage
● feMerge
● feMergeNode
● feMorphology
● feOffset
● fePointLight
● feSpecularLighting
● feSpotLight
● feTile
● feTurbulence
● filter
● font
● font-face
● font-face-format
● font-face-name
● font-face-src
● font-face-uri
● foreignObject
● g
● glyph
● glyphRef
● hkern
● image
● line
● linearGradient
● marker
● mask
● metadata
● missing-glyph
● mpath
● path
● pattern
● polygon

http://www.w3.org/TR/SVG/eltindex.html (2 of 3)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement

Element Index - SVG 1.1 - 20030114

● polyline
● radialGradient
● rect
● script
● set
● stop
● style
● svg
● switch
● symbol
● text
● textPath
● title
● tref
● tspan
● use
● view
● vkern

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/eltindex.html (3 of 3)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/refs.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Property Index - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

Appendix N: Property Index

Name Values Initial value
Applies to

(Default: all)
Inherited?

Percentages
(Default: N/

A)

Media
groups

Animatable

'alignment-
baseline'

auto | baseline |
before-edge | text-
before-edge |
middle | central |
after-edge | text-
after-edge |
ideographic |
alphabetic |
hanging |
mathematical |
inherit

see property
description

'tspan', 'tref',
'altGlyph',
'textPath' elements

no visual yes

'baseline-
shift'

baseline | sub |
super |
<percentage> |
<length> | inherit

baseline
'tspan', 'tref',
'altGlyph',
'textPath' elements

no

refers to the
'line-height'
of the 'text'
element,
which in the
case of
SVG is
defined to
be equal to
the 'font-
size'

visual

yes (non-
additive,
'set' and
'animate'
elements
only)

'clip'
<shape> | auto |
inherit

auto

elements which
establish a new
viewport, 'pattern'
elements and
'marker' elements

no visual yes

'clip-path'
<uri> | none |
inherit

none
container
elements and
graphics elements

no visual yes

'clip-rule'
nonzero | evenodd
| inherit nonzero

graphics elements
within a 'clipPath'
element

yes visual yes

'color' <color> | inherit depends on
user agent

elements to which
properties 'fill',
'stroke', 'stop-
color', 'flood-color',
'lighting-color'
apply

yes visual yes

http://www.w3.org/TR/SVG/propidx.html (1 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visufx.html#value-def-shape
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

Property Index - SVG 1.1 - 20030114

'color-
interpolation'

auto | sRGB |
linearRGB | inherit sRGB

container
elements, graphics
elements and
'animateColor'

yes visual yes

'color-
interpolation-
filters'

auto | sRGB |
linearRGB | inherit linearRGB filter primitives yes visual yes

'color-profile'
auto | sRGB |
<name> | <uri> |
inherit

auto
'image' elements
that refer to raster
images

yes visual yes

'color-
rendering'

auto |
optimizeSpeed |
optimizeQuality |
inherit

auto

container
elements, graphics
elements and
'animateColor'

yes visual yes

'cursor'

[[<uri> ,]* [auto |
crosshair | default
| pointer | move | e-
resize | ne-resize |
nw-resize | n-
resize | se-resize |
sw-resize | s-
resize | w-resize|
text | wait | help]]
| inherit

auto
container
elements and
graphics elements

yes
visual,
interactive

yes

'direction' ltr | rtl | inherit ltr
text content
elements

yes visual no

'display'

inline | block | list-
item | run-in |
compact | marker |
table | inline-table |
table-row-group |
table-header-
group | table-
footer-group |
table-row | table-
column-group |
table-column |
table-cell | table-
caption | none |
inherit

inline

'svg', 'g', 'switch',
'a', 'foreignObject',
graphics elements
(including the 'text'
element) and text
sub-elements (i.e.,
'tspan', 'tref',
'altGlyph',
'textPath')

no all yes

'dominant-
baseline'

auto | use-script |
no-change | reset-
size | ideographic |
alphabetic |
hanging |
mathematical |
central | middle |
text-after-edge |
text-before-edge |
inherit

auto
text content
elements

no visual yes

'enable-
background'

accumulate | new
[<x> <y> <width>
<height>] | inherit

accumulate container elements no visual no

'fill'
<paint> (See
Specifying paint) black

shapes and text
content elements

yes visual yes

http://www.w3.org/TR/SVG/propidx.html (2 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#interactive-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/SVG/extend.html#ForeignObjectElement
http://www.w3.org/TR/REC-CSS2/media.html#all-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

Property Index - SVG 1.1 - 20030114

'fill-opacity'
<opacity-value> |
inherit 1

shapes and text
content elements

yes visual yes

'fill-rule'
nonzero | evenodd
| inherit nonzero

shapes and text
content elements

yes visual yes

'filter'
<uri> | none |
inherit none

container
elements and
graphics elements

no visual yes

'flood-color'

currentColor |
<color> [icc-color
(<name>[,
<icccolorvalue>]*)]
|
inherit

black 'feFlood' elements no visual yes

'flood-
opacity'

<opacity-value> |
inherit 1 'feFlood' elements no visual yes

'font'

[['font-style' ||
'font-variant' ||
'font-weight']?
'font-size' [/ 'line-
height']? 'font-
family'] | caption |
icon | menu |
message-box |
small-caption |
status-bar | inherit

see
individual
properties

text content
elements

yes

allowed on
'font-size'
and 'line-
height' ('line-
height'
same as
'font-size' in
SVG)

visual

yes (non-
additive,
'set' and
'animate'
elements
only)

'font-family'

[[<family-name> |
<generic-family>],]
* [<family-name>
| <generic-family>]
| inherit

depends on
user agent

text content
elements

yes visual yes

'font-size'

<absolute-size> |
<relative-size> |
<length> |
<percentage> |
inherit

medium
text content
elements

yes, the
computed
value is
inherited

refer to
parent
element's
font size

visual yes

'font-size-
adjust'

<number> | none |
inherit

none
text content
elements

yes visual yes

'font-stretch'

normal | wider |
narrower | ultra-
condensed | extra-
condensed |
condensed | semi-
condensed | semi-
expanded |
expanded | extra-
expanded | ultra-
expanded | inherit

normal
text content
elements

yes visual yes

'font-style'
normal | italic |
oblique | inherit normal

text content
elements

yes visual yes

'font-variant'
normal | small-
caps | inherit normal

text content
elements

yes visual yes

http://www.w3.org/TR/SVG/propidx.html (3 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-line-height
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-line-height
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-family-name
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-generic-family
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-family-name
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-generic-family
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-absolute-size
http://www.w3.org/TR/REC-CSS2/fonts.html#value-def-relative-size
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-number
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

Property Index - SVG 1.1 - 20030114

'font-weight'

normal | bold |
bolder | lighter |
100 | 200 | 300 |
400 | 500 | 600 |
700 | 800 | 900 |
inherit

normal
text content
elements

yes visual yes

'glyph-
orientation-
horizontal'

<angle> | inherit 0deg
text content
elements

yes visual no

'glyph-
orientation-
vertical'

auto | <angle> |
inherit auto

text content
elements

yes visual no

'image-
rendering'

auto |
optimizeSpeed |
optimizeQuality |
inherit

auto images yes visual yes

'kerning'
auto | <length> |
inherit

auto
text content
elements

yes visual yes

'letter-
spacing'

normal | <length> |
inherit

normal
text content
elements

yes visual yes

'lighting-
color'

currentColor |
<color> [icc-color
(<name>[,
<icccolorvalue>]*)]
|
inherit

white

'feDiffuseLighting'
and
'feSpecularLighting'
elements

no visual yes

'marker' see individual
properties

see
individual
properties

'path', 'line',
'polyline' and
'polygon' elements

yes visual yes

'marker-end'
'marker-mid'
'marker-start'

none |
inherit |
<uri>

none
'path', 'line',
'polyline' and
'polygon' elements

yes visual yes

'mask'
<uri> | none |
inherit none

container
elements and
graphics elements

no visual yes

'opacity'
<opacity-value> |
inherit 1

container
elements and
graphics elements

no visual yes

'overflow'
visible | hidden |
scroll | auto | inherit see prose

elements which
establish a new
viewport, 'pattern'
elements and
'marker' elements

no visual yes

'pointer-
events'

visiblePainted |
visibleFill |
visibleStroke |
visible |
painted | fill |
stroke | all | none |
inherit

visiblePainted graphics elements yes visual yes

http://www.w3.org/TR/SVG/propidx.html (4 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

Property Index - SVG 1.1 - 20030114

'shape-
rendering'

auto |
optimizeSpeed |
crispEdges |
geometricPrecision
| inherit

auto shapes yes visual yes

'stop-color'

currentColor |
<color> [icc-color
(<name>[,
<icccolorvalue>]*)]
|
inherit

black 'stop' elements no visual yes

'stop-opacity'
<opacity-value> |
inherit 1 'stop' elements no visual yes

'stroke'
<paint> (See
Specifying paint) none

shapes and text
content elements

yes visual yes

'stroke-
dasharray'

none |
<dasharray> |
inherit

none
shapes and text
content elements

yes visual

'stroke-
dashoffset'

<length> | inherit 0
shapes and text
content elements

yes see prose visual yes

'stroke-
linecap'

butt | round |
square | inherit butt

shapes and text
content elements

yes visual yes

'stroke-
linejoin'

miter | round |
bevel | inherit miter

shapes and text
content elements

yes visual yes

'stroke-
miterlimit'

<miterlimit> |
inherit 4

shapes and text
content elements

yes visual yes

'stroke-
opacity'

<opacity-value> |
inherit 1

shapes and text
content elements

yes visual yes

'stroke-width' <length> | inherit 1
shapes and text
content elements

yes visual yes

'text-anchor'
start | middle | end
| inherit start

text content
elements

yes visual yes

'text-
decoration'

none | [underline
|| overline || line-
through || blink] |
inherit

none
text content
elements

no (see
prose)

 visual yes

'text-
rendering'

auto |
optimizeSpeed |
optimizeLegibility |
geometricPrecision
| inherit

auto 'text' elements yes visual yes

'unicode-bidi'
normal | embed |
bidi-override |
inherit

normal
text content
elements

no visual no

'visibility'
visible | hidden |
collapse | inherit visible

graphics elements
(including the 'text'
element) and text
sub-elements (i.e.,
'tspan', 'tref',
'altGlyph',
'textPath' and 'a')

yes visual yes

http://www.w3.org/TR/SVG/propidx.html (5 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group

Property Index - SVG 1.1 - 20030114

'word-
spacing'

normal | <length> |
inherit

normal
text content
elements

yes visual yes

'writing-
mode'

lr-tb | rl-tb | tb-rl | lr
| rl | tb | inherit lr-tb 'text' elements yes visual no

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/propidx.html (6 of 6)4/2/07 7:47 PM

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

Feature Sets - SVG 1.1 - 20030114

previous next contents elements attributes properties index

14 January 2003

Appendix O: Feature Strings

This appendix is normative.

The following are the feature strings for the requiredFeatures attribute. These
same feature strings apply to the hasFeature method call that is part of the SVG
DOM's support for the DOMImplementation interface defined in [DOM2-CORE]
(see Feature strings for the hasFeature method call). In some cases the feature
strings map directly to SVG modules, in others they represent some functionality
of the User Agent (that it is a dynamic viewer for example). Note that the format
and naming for feature strings changed from SVG 1.0 to SVG 1.1. The SVG 1.0
feature strings are listed below after the SVG 1.1 feature strings and User
Agents should support all listed feature strings for compatibility reasons.
However, the SVG 1.0 feature strings can be considered deprecated.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG

User Agent Supports:
At least one of the following (all of which are described subsequently):
"http://www.w3.org/TR/SVG11/feature#SVG-static", "http://www.w3.org/
TR/SVG11/feature#SVG-animation", "http://www.w3.org/TR/SVG11/
feature#SVG-dynamic" or "http://www.w3.org/TR/SVG11/
feature#SVGDOM". (Because the feature string "http://www.w3.org/TR/
SVG11/feature#SVG" can be ambiguous in some circumstances, it is
recommended that more specific feature strings be used.)

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM

User Agent Supports:
At least one of the following (all of which are described subsequently):
"http://www.w3.org/TR/SVG11/feature#SVGDOM-static", "http://www.w3.

http://www.w3.org/TR/SVG/feature.html (1 of 10)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/SVG/svgdom.html
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/SVG/svgdom.html#FeatureStrings

Feature Sets - SVG 1.1 - 20030114

org/TR/SVG11/feature#SVGDOM-animation" or "http://www.w3.org/TR/
SVG11/feature#SVGDOM-dynamic". (Because the feature string "http://
www.w3.org/TR/SVG11/feature#SVGDOM" can be ambiguous in some
circumstances, it is recommended that more specific feature strings be
used.)

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-static

User Agent Supports:
The following features (described below)

❍ http://www.w3.org/TR/SVG11/feature#CoreAttribute
❍ http://www.w3.org/TR/SVG11/feature#Structure
❍ http://www.w3.org/TR/SVG11/feature#ContainerAttribute
❍ http://www.w3.org/TR/SVG11/feature#ConditionalProcessing
❍ http://www.w3.org/TR/SVG11/feature#Image
❍ http://www.w3.org/TR/SVG11/feature#Style
❍ http://www.w3.org/TR/SVG11/feature#ViewportAttribute
❍ http://www.w3.org/TR/SVG11/feature#Shape
❍ http://www.w3.org/TR/SVG11/feature#Text
❍ http://www.w3.org/TR/SVG11/feature#PaintAttribute
❍ http://www.w3.org/TR/SVG11/feature#OpacityAttribute
❍ http://www.w3.org/TR/SVG11/feature#GraphicsAttribute
❍ http://www.w3.org/TR/SVG11/feature#Marker
❍ http://www.w3.org/TR/SVG11/feature#ColorProfile
❍ http://www.w3.org/TR/SVG11/feature#Gradient
❍ http://www.w3.org/TR/SVG11/feature#Pattern
❍ http://www.w3.org/TR/SVG11/feature#Clip
❍ http://www.w3.org/TR/SVG11/feature#Mask
❍ http://www.w3.org/TR/SVG11/feature#Filter
❍ http://www.w3.org/TR/SVG11/feature#XlinkAttribute
❍ http://www.w3.org/TR/SVG11/feature#Font
❍ http://www.w3.org/TR/SVG11/feature#Extensibility

For SVG viewers, "http://www.w3.org/TR/SVG11/feature#SVG-static"
indicates that the viewer can process and render successfully all of the
language features in the modules corresponding to the features listed
above.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-static

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language
features for "http://www.w3.org/TR/SVG11/feature#SVG-static".

http://www.w3.org/TR/SVG/feature.html (2 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-animation

User Agent Supports:
All of the language features from "http://www.w3.org/TR/SVG11/
feature#SVG-static" plus the feature "http://www.w3.org/TR/SVG11/
feature#Animation". For SVG viewers running on media capable of
rendering time-based material, such as displays, "http://www.w3.org/TR/
SVG11/feature#SVG-animation" indicates that the viewer can process
and render successfully all of the corresponding language features.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-animation

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language
features for "http://www.w3.org/TR/SVG11/feature#SVG-animation".

Feature String:
http://www.w3.org/TR/SVG11/feature#SVG-dynamic

User Agent Supports:
All of the language features from "http://www.w3.org/TR/SVG11/
feature#SVG-animation" plus the following features:

❍ http://www.w3.org/TR/SVG11/feature#Hyperlinking
❍ http://www.w3.org/TR/SVG11/feature#Scripting
❍ http://www.w3.org/TR/SVG11/feature#View
❍ http://www.w3.org/TR/SVG11/feature#Cursor
❍ http://www.w3.org/TR/SVG11/feature#GraphicalEventsAttribute
❍ http://www.w3.org/TR/SVG11/feature#DocumentEventsAttribute
❍ http://www.w3.org/TR/SVG11/feature#AnimationEventsAttribute

For SVG viewers running on media capable of rendering time-based
material, such as displays, "http://www.w3.org/TR/SVG11/feature#SVG-
dynamic" indicates that the viewer can process and render successfully all
of the corresponding language features.

Feature String:
http://www.w3.org/TR/SVG11/feature#SVGDOM-dynamic

User Agent Supports:
All of the DOM interfaces and methods that correspond to the language
features for "http://www.w3.org/TR/SVG11/feature#SVG-dynamic".

Feature String:
http://www.w3.org/TR/SVG11/feature#CoreAttribute

User Agent Supports:

http://www.w3.org/TR/SVG/feature.html (3 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

Core Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Structure

User Agent Supports:
Structure Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicStructure

User Agent Supports:
Basic Structure Module

Feature String:
http://www.w3.org/TR/SVG11/feature#ContainerAttribute

User Agent Supports:
Container Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#ConditionalProcessing

User Agent Supports:
Conditional Processing Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Image

User Agent Supports:
Image Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Style

User Agent Supports:
Style Module

Feature String:
http://www.w3.org/TR/SVG11/feature#ViewportAttribute

User Agent Supports:
Viewport Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Shape

User Agent Supports:
Shape Module

http://www.w3.org/TR/SVG/feature.html (4 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

Feature String:
http://www.w3.org/TR/SVG11/feature#Text

User Agent Supports:
Text Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicText

User Agent Supports:
Basic Text Module

Feature String:
http://www.w3.org/TR/SVG11/feature#PaintAttribute

User Agent Supports:
Paint Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicPaintAttribute

User Agent Supports:
Basic Paint Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#OpacityAttribute

User Agent Supports:
Opacity Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#GraphicsAttribute

User Agent Supports:
Graphics Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicGraphicsAttribute

User Agent Supports:
Basic Graphics Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Marker

User Agent Supports:
Marker Module

http://www.w3.org/TR/SVG/feature.html (5 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

Feature String:
http://www.w3.org/TR/SVG11/feature#ColorProfile

User Agent Supports:
Color Profile Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Gradient

User Agent Supports:
Gradient Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Pattern

User Agent Supports:
Pattern Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Clip

User Agent Supports:
Clip Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicClip

User Agent Supports:
Basic Clip Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Mask

User Agent Supports:
Mask Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Filter

User Agent Supports:
Filter Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicFilter

User Agent Supports:
Basic Filter Module

Feature String:

http://www.w3.org/TR/SVG/feature.html (6 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

http://www.w3.org/TR/SVG11/feature#DocumentEventsAttribute
User Agent Supports:

Document Events Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#GraphicalEventsAttribute

User Agent Supports:
Graphical Events Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#AnimationEventsAttribute

User Agent Supports:
Animation Events Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Cursor

User Agent Supports:
Cursor Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Hyperlinking

User Agent Supports:
Hyperlinking Module

Feature String:
http://www.w3.org/TR/SVG11/feature#XlinkAttribute

User Agent Supports:
Xlink Attribute Module

Feature String:
http://www.w3.org/TR/SVG11/feature#ExternalResourcesRequired

User Agent Supports:
ExternalResourcesRequired Module

Feature String:
http://www.w3.org/TR/SVG11/feature#View

User Agent Supports:
View Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Script

http://www.w3.org/TR/SVG/feature.html (7 of 10)4/2/07 7:47 PM

Feature Sets - SVG 1.1 - 20030114

User Agent Supports:
Script Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Animation

User Agent Supports:
Animation Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Font

User Agent Supports:
Font Module

Feature String:
http://www.w3.org/TR/SVG11/feature#BasicFont

User Agent Supports:
Basic Font Module

Feature String:
http://www.w3.org/TR/SVG11/feature#Extensibility

User Agent Supports:
Extensibility Module

SVG 1.0 feature strings

All SVG 1.0 feature strings referring to language capabilities begin with "org.
w3c.svg". All SVG 1.0 feature strings referring to SVG DOM capabilities begin
with "org.w3c.dom.svg".

● The feature string "org.w3c.svg" indicates that the user agent supports
at least one of the following (all of which are described subsequently):
"org.w3c.svg.static", "org.w3c.svg.animation", "org.w3c.svg.
dynamic" or "org.w3c.dom.svg". (Because the feature string "org.w3c.
svg" can be ambiguous in some circumstances, it is recommended that
more specific feature strings be used.)

● The feature string "org.w3c.dom.svg" indicates that the user agent
supports at least one of the following (all of which are described
subsequently): "org.w3c.dom.svg.static", "org.w3c.dom.svg.
animation" or "org.w3c.dom.svg.dynamic". (Because the feature string
"org.w3c.dom.svg" can be ambiguous in some circumstances, it is
recommended that more specific feature strings be used.)

http://www.w3.org/TR/SVG/feature.html (8 of 10)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/extend.html#extensibility-mod
http://www.w3.org/TR/SVG/svgdom.html

Feature Sets - SVG 1.1 - 20030114

● The feature string "org.w3c.svg.static" indicates the availability of all of
the language capabilities defined in:

❍ Basic Data Types and Interfaces
❍ Document Structure
❍ Styling
❍ Coordinate Systems, Transformations and Units
❍ Paths
❍ Basic Shapes
❍ Text
❍ Painting: Filling, Stroking and Marker Symbols
❍ Color
❍ Gradients and Patterns
❍ Clipping, Masking and Compositing
❍ Filter Effects
❍ Fonts
❍ The 'switch' element
❍ The requiredFeatures attribute
❍ The requiredExtensions attribute
❍ The systemLanguage attribute

For SVG viewers, "org.w3c.svg.static" indicates that the viewer can
process and render successfully all of the language features listed above.

● The feature string "org.w3c.dom.svg.static" indicates the availability of
all of the DOM interfaces and methods that correspond to the language
features for "org.w3c.svg.static".

● The feature string "org.w3c.svg.animation" includes all of the language
capabilities defined for "org.w3c.svg.static" plus the availability of all of
the language capabilities defined in Animation. For SVG viewers running
on media capable of rendering time-based material, such as displays,
"org.w3c.svg.animation" indicates that the viewer can process and
render successfully all of the corresponding language features.

● The feature string "org.w3c.dom.svg.animation" corresponds to the
availability of DOM interfaces and methods that correspond to the
language features for "org.w3c.svg.animation".

● The feature string "org.w3c.svg.dynamic" includes all of the language
capabilities defined for "org.w3c.svg.animation" plus the availability of
all of the language capabilities defined in Relationship with DOM2 events,
Linking and Interactivity and Scripting. For SVG viewers running on media
capable of rendering time-based material, such as displays, "org.w3c.svg.
dynamic" indicates that the viewer can process and render successfully

http://www.w3.org/TR/SVG/feature.html (9 of 10)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/svgdom.html#RelationShipWithDOM2Events

Feature Sets - SVG 1.1 - 20030114

all of the corresponding language features.
● The feature string "org.w3c.dom.svg.dynamic" corresponds to the

availability of DOM interfaces and methods that correspond to the
language features for "org.w3c.svg.dynamic".

● The feature string "org.w3c.svg.all" corresponds to the availability of all
of the language capabilities defined in this specification.

● The feature string "org.w3c.dom.svg.all" corresponds to the availability
of all of the DOM interfaces defined in this specification.

previous next contents elements attributes properties index

http://www.w3.org/TR/SVG/feature.html (10 of 10)4/2/07 7:47 PM

http://www.w3.org/TR/SVG/indexlist.html
http://www.w3.org/TR/SVG/index.html#minitoc
http://www.w3.org/TR/SVG/indexlist.html

	w3.org
	Scalable Vector Graphics (SVG) 1.1 Specification
	Introduction - SVG 1.1 - 20030114
	Concepts - SVG 1.1 - 20030114
	Rendering Model - SVG 1.1 - 20030114
	Basic Data Types and Interfaces - SVG 1.1 - 20030114
	Document Structure - SVG 1.1 - 20030114
	Styling - SVG 1.1 - 20030114
	Coordinate Systems, Transformations and Units - SVG 1.1 - 20030114
	Paths - SVG 1.1 - 20030114
	Basic Shapes - SVG 1.1 - 20030114
	Text - SVG 1.1 - 20030114
	Painting: Filling, Stroking and Marker Symbols - SVG 1.1 - 20030114
	Color - SVG 1.1 - 20030114
	Gradients and Patterns - SVG 1.1 - 20030114
	Clipping, Masking and Compositing - SVG 1.1 - 20030114
	Filter Effects - SVG 1.1 - 20030114
	Interactivity - SVG 1.1 - 20030114
	Linking - SVG 1.1 - 20030114
	Scripting - SVG 1.1 - 20030114
	Animation - SVG 1.1 - 20030114
	Fonts - SVG 1.1 - 20030114
	Metadata - SVG 1.1 - 20030114
	Attribute Index - SVG 1.1 - 20030114
	Element Index - SVG 1.1 - 20030114
	Property Index - SVG 1.1 - 20030114
	Feature Sets - SVG 1.1 - 20030114

